References

[1]Jr Atkinson A.J., W. A. Colburn, V. G. DeGruttola, D. L. DeMets, G. J. Downing, D. F. Hoth, J. A. Oates, C. C. Peck, R. T. Schooley, B. A. Spilker, J. Woodcock, and S. L. Zeger. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics, 69(3):89–95, 2001. doi:10.1067/mcp.2001.113989.
[2]James P. B. O’Connor, Eric O. Aboagye, Judith E. Adams, Hugo J. W. L. Aerts, Sally F. Barrington, Ambros J. Beer, Ronald Boellaard, Sarah E. Bohndiek, Michael Brady, Gina Brown, David L. Buckley, Thomas L. Chenevert, Laurence P. Clarke, Sandra Collette, Gary J. Cook, Nandita M. DeSouza, John C. Dickson, Caroline Dive, Jeffrey L. Evelhoch, Corinne Faivre-Finn, Ferdia A. Gallagher, Fiona J. Gilbert, Robert J. Gillies, Vicky Goh, John R. Griffiths, Ashley M. Groves, Steve Halligan, Adrian L. Harris, David J. Hawkes, Otto S. Hoekstra, Erich P. Huang, Brian F. Hutton, Edward F. Jackson, Gordon C. Jayson, Andrew Jones, Dow-Mu Koh, Denis Lacombe, Philippe Lambin, Nathalie Lassau, Martin O. Leach, Ting-Yim Lee, Edward L. Leen, Jason S. Lewis, Yan Liu, Mark F. Lythgoe, Prakash Manoharan, Ross J. Maxwell, Kenneth A. Miles, Bruno Morgan, Steve Morris, Tony Ng, Anwar R. Padhani, Geoff J. M. Parker, Mike Partridge, Arvind P. Pathak, Andrew C. Peet, Shonit Punwani, Andrew R. Reynolds, Simon P. Robinson, Lalitha K. Shankar, Ricky A. Sharma, Dmitry Soloviev, Sigrid Stroobants, Daniel C. Sullivan, Stuart A. Taylor, Paul S. Tofts, Gillian M. Tozer, Marcel van Herk, Simon Walker-Samuel, James Wason, Kaye J. Williams, Paul Workman, Thomas E. Yankeelov, Kevin M. Brindle, Lisa M. McShane, Alan Jackson, and John C. Waterton. Imaging biomarker roadmap for cancer studies. Nature Reviews Clinical Oncology, 14(3):169–186, mar 2017. URL: http://dx.doi.org/10.1038/nrclinonc.2016.162 http://www.nature.com/doifinder/10.1038/nrclinonc.2016.162 http://www.nature.com/articles/nrclinonc.2016.162, doi:10.1038/nrclinonc.2016.162.
[3]Philippe Lambin, Ralph T. H. Leijenaar, Timo M. Deist, Jurgen Peerlings, Evelyn E. C. de Jong, Janita van Timmeren, Sebastian Sanduleanu, Ruben T. H. M. Larue, Aniek J. G. Even, Arthur Jochems, Yvonka van Wijk, Henry Woodruff, Johan van Soest, Tim Lustberg, Erik Roelofs, Wouter J. C. van Elmpt, André L. A. J. Dekker, Felix M. Mottaghy, Joachim E. Wildberger, and Sean Walsh. Radiomics: the bridge between medical imaging and personalized medicine. Nature reviews. Clinical oncology, 14(12):749–762, dec 2017. URL: http://www.ncbi.nlm.nih.gov/pubmed/28975929, doi:10.1038/nrclinonc.2017.141.
[4]Juan C. Caicedo, Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba Molnar, Aliaksei S. Vasilevich, Joseph D. Barry, Harmanjit Singh Bansal, Oren Kraus, Mathias Wawer, Lassi Paavolainen, Markus D. Herrmann, Mohammad Rohban, Jane Hung, Holger Hennig, John Concannon, Ian Smith, Paul A. Clemons, Shantanu Singh, Paul Rees, Peter Horvath, Roger G. Linington, and Anne E. Carpenter. Data-analysis strategies for image-based cell profiling. Nature Methods, 14(9):849–863, 2017. doi:10.1038/nmeth.4397.
[5]Daniel C Sullivan, Nancy A Obuchowski, Larry G Kessler, David L Raunig, Constantine Gatsonis, Erich P Huang, Marina Kondratovich, Lisa M McShane, Anthony P Reeves, Daniel P Barboriak, Alexander R Guimaraes, Richard L Wahl, and RSNA-QIBA Metrology Working Group. Metrology Standards for Quantitative Imaging Biomarkers. Radiology, 277(3):813–25, dec 2015. URL: http://www.ncbi.nlm.nih.gov/pubmed/26267831 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4666097, doi:10.1148/radiol.2015142202.
[6]James L Mulshine, David S Gierada, Samuel G Armato, Rick S Avila, David F Yankelevitz, Ella A Kazerooni, Michael F McNitt-Gray, Andrew J Buckler, and Daniel C Sullivan. Role of the Quantitative Imaging Biomarker Alliance in optimizing CT for the evaluation of lung cancer screen-detected nodules. Journal of the American College of Radiology, 12(4):390–5, apr 2015. URL: http://www.ncbi.nlm.nih.gov/pubmed/25842017, doi:10.1016/j.jacr.2014.12.003.
[7]Laurence P Clarke, Robert J Nordstrom, Huiming Zhang, Pushpa Tandon, Yantian Zhang, George Redmond, Keyvan Farahani, Gary Kelloff, Lori Henderson, Lalitha Shankar, James Deye, Jacek Capala, and Paula Jacobs. The Quantitative Imaging Network: NCI’s Historical Perspective and Planned Goals. Translational oncology, 7(1):1–4, feb 2014. URL: http://www.ncbi.nlm.nih.gov/pubmed/24772201 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3998696.
[8]Robert J Nordstrom. The quantitative imaging network in precision medicine. Tomography, 2(4):239, 2016.
[9]Ronald Boellaard, Roberto Delgado-Bolton, Wim J. G. Oyen, Francesco Giammarile, Klaus Tatsch, Wolfgang Eschner, Fred J. Verzijlbergen, Sally F. Barrington, Lucy C. Pike, Wolfgang A. Weber, Sigrid G. Stroobants, Dominique Delbeke, Kevin J. Donohoe, Scott Holbrook, Michael M. Graham, Giorgio Testanera, Otto S. Hoekstra, Josee M. Zijlstra, Eric P. Visser, Corneline J. Hoekstra, Jan Pruim, Antoon T. Willemsen, Bertjan Arends, Jörg Kotzerke, Andreas Bockisch, Thomas Beyer, Arturo Chiti, and Bernd J. Krause. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European journal of nuclear medicine and molecular imaging, 42(2):328–54, feb 2015. URL: http://www.ncbi.nlm.nih.gov/pubmed/25452219 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4315529, doi:10.1007/s00259-014-2961-x.
[10]European Society of Radiology (ESR). ESR statement on the stepwise development of imaging biomarkers. Insights into imaging, 4(2):147–52, apr 2013. URL: http://www.ncbi.nlm.nih.gov/pubmed/23397519 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3609959, doi:10.1007/s13244-013-0220-5.
[11]John C Waterton and Liisa Pylkkanen. Qualification of imaging biomarkers for oncology drug development. European journal of cancer, 48(4):409–15, mar 2012. URL: http://www.ncbi.nlm.nih.gov/pubmed/22226478, doi:10.1016/j.ejca.2011.11.037.
[12]Mathieu Hatt, Florent Tixier, Larry Pierce, Paul E. Kinahan, Catherine Cheze Le Rest, and Dimitris Visvikis. Characterization of PET/CT images using texture analysis: the past, the present… any future? European journal of nuclear medicine and molecular imaging, 44(1):151–165, jan 2017. URL: http://link.springer.com/10.1007/s00259-016-3427-0 http://www.ncbi.nlm.nih.gov/pubmed/27271051 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5283691, doi:10.1007/s00259-016-3427-0.
[13]Hákon Gudbjartsson and Samuel Patz. The Rician distribution of noisy MRI data. Magnetic resonance in medicine, 34(6):910–4, dec 1995. URL: http://www.ncbi.nlm.nih.gov/pubmed/2254141 http://www.ncbi.nlm.nih.gov/pubmed/8598820 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2254141.
[14]John G. Sled, Alex P. Zijdenbos, and Alan C. Evans. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE transactions on medical imaging, 17(1):87–97, feb 1998. URL: http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed{\&}DbFrom=pubmed{\&}Cmd=Link{\&}LinkName=pubmed{\_}pubmed{\&}LinkReadableName=Related Articles{\&}IdsFromResult=9617910{\&}ordinalpos=3{\&}itool=EntrezSystem2.PEntrez.Pubmed.Pubmed{\_}ResultsPanel.Pubmed{\_}RVDocSum http://www.ncbi.nl, doi:10.1109/42.668698.
[15]Uros Vovk, Franjo Pernus, and Bostjan Likar. A review of methods for correction of intensity inhomogeneity in MRI. IEEE transactions on medical imaging, 26(3):405–21, mar 2007. URL: http://www.ncbi.nlm.nih.gov/pubmed/17354645, arXiv:2, doi:10.1109/TMI.2006.891486.
[16]M. A. Balafar, A. R. Ramli, M. I. Saripan, and S. Mashohor. Review of brain MRI image segmentation methods. Artificial Intelligence Review, 33(3):261–274, mar 2010. URL: http://link.springer.com/10.1007/s10462-010-9155-0, doi:10.1007/s10462-010-9155-0.
[17]Marine Soret, Stephen L. Bacharach, and Irène Buvat. Partial-volume effect in PET tumor imaging. Journal of nuclear medicine, 48(6):932–45, jun 2007. URL: http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.106.035774 http://www.ncbi.nlm.nih.gov/pubmed/17504879, doi:10.2967/jnumed.106.035774.
[18]N. Boussion, Catherine Cheze Le Rest, Mathieu Hatt, and Dimitris Visvikis. Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging. European journal of nuclear medicine and molecular imaging, 36(7):1064–75, jul 2009. URL: http://www.ncbi.nlm.nih.gov/pubmed/19224209, doi:10.1007/s00259-009-1065-5.
[19]Adrien Le Pogam, H. Hanzouli, Mathieu Hatt, Catherine Cheze Le Rest, and Dimitris Visvikis. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Medical image analysis, 17(8):877–91, dec 2013. URL: http://dx.doi.org/10.1016/j.media.2013.05.005 http://www.ncbi.nlm.nih.gov/pubmed/23837964, doi:10.1016/j.media.2013.05.005.
[20]Issam El Naqa. Image Processing and Analysis of PET and Hybrid PET Imaging, pages 285–301. Springer International Publishing, Cham, 2017. URL: https://doi.org/10.1007/978-3-319-40070-9{\_}12, doi:10.1007/978-3-319-40070-9_12.
[21]Lars Gjesteby, Bruno De Man, Yannan Jin, Harald Paganetti, Joost Verburg, Drosoula Giantsoudi, and Ge Wang. Metal Artifact Reduction in CT: Where Are We After Four Decades? IEEE Access, 4:5826–5849, 2016. URL: http://ieeexplore.ieee.org/document/7565564/, doi:10.1109/ACCESS.2016.2608621.
[22]Kevin Smith, Yunpeng Li, Filippo Piccinini, Gabor Csucs, Csaba Balazs, Alessandro Bevilacqua, and Peter Horvath. CIDRE: An illumination-correction method for optical microscopy. Nature Methods, 12(5):404–406, 2015. doi:10.1038/nmeth.3323.
[23]Stefan Schirra. How Reliable Are Practical Point-in-Polygon Strategies? In Algorithms - ESA 2008, pages 744–755. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. URL: http://link.springer.com/10.1007/978-3-540-87744-8{\_}62, doi:10.1007/978-3-540-87744-8_62.
[24]Jianhua Yan, Jason Lim Chu-Shern, Hoi Yin Loi, Lih Kin Khor, Arvind K. Sinha, Swee Tian Quek, Ivan W. K. Tham, and David Townsend. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. Journal of nuclear medicine, 56(11):1667–73, nov 2015. URL: http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.115.156927{\%}5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/26229145 http://www.ncbi.nlm.nih.gov/pubmed/26229145, doi:10.2967/jnumed.115.156927.
[25]Clément Bailly, Caroline Bodet-Milin, Solène Couespel, Hatem Necib, Françoise Kraeber-Bodéré, Catherine Ansquer, and Thomas Carlier. Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials. PloS one, 11(7):e0159984, 2016. URL: http://www.ncbi.nlm.nih.gov/pubmed/27467882 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4965162, doi:10.1371/journal.pone.0159984.
[26]Baderaldeen A Altazi, Geoffrey G Zhang, Daniel C Fernandez, Michael E Montejo, Dylan Hunt, Joan Werner, Matthew C Biagioli, and Eduardo G Moros. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Journal of applied clinical medical physics, 18(6):32–48, nov 2017. URL: http://www.ncbi.nlm.nih.gov/pubmed/28891217 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5689938, doi:10.1002/acm2.12170.
[27]Muhammad Shafiq-Ul-Hassan, Geoffrey G. Zhang, Kujtim Latifi, Ghanim Ullah, Dylan C. Hunt, Yoganand Balagurunathan, Mahmoud Abrahem Abdalah, Matthew B. Schabath, Dmitry G. Goldgof, Dennis Mackin, Laurence Edward Court, Robert James Gillies, and Eduardo Gerardo Moros. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Medical physics, 44(3):1050–1062, mar 2017. URL: http://doi.wiley.com/10.1002/mp.12123 http://www.ncbi.nlm.nih.gov/pubmed/28112418 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5462462, doi:10.1002/mp.12123.
[28]Isaac Shiri, Arman Rahmim, Pardis Ghaffarian, Parham Geramifar, Hamid Abdollahi, and Ahmad Bitarafan-Rajabi. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. European Radiology, 27(11):4498–4509, nov 2017. URL: http://link.springer.com/10.1007/s00330-017-4859-z, doi:10.1007/s00330-017-4859-z.
[29]Martin Vallières, Emily Kay-Rivest, Léo Jean Perrin, Xavier Liem, Christophe Furstoss, Hugo J. W. L. Aerts, Nader Khaouam, Phuc Felix Nguyen-Tan, Chang-Shu Wang, Khalil Sultanem, Jan Seuntjens, and Issam El Naqa. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Scientific reports, 7():10117, aug 2017. URL: http://arxiv.org/abs/1703.08516 http://www.ncbi.nlm.nih.gov/pubmed/28860628 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5579274, arXiv:1703.08516, doi:10.1038/s41598-017-10371-5.
[30]Dennis Mackin, Xenia Fave, Lifei Zhang, Jinzhong Yang, A. Kyle Jones, Chaan S. Ng, and Laurence Court. Harmonizing the pixel size in retrospective computed tomography radiomics studies. PLOS ONE, 12(9):e0178524, sep 2017. URL: http://dx.plos.org/10.1371/journal.pone.0178524, doi:10.1371/journal.pone.0178524.
[31]Alex Zwanenburg, Stefan Leger, Linda Agolli, Karoline Pilz, Esther G. C. Troost, Christian Richter, and Steffen Löck. Assessing robustness of radiomic features by image perturbation. eprint arXiv:1806.06719 [cs.CV], jun 2018. URL: http://arxiv.org/abs/1806.06719, arXiv:1806.06719.
[32]Philippe Thévenaz, Thierry Blu, and Michael Unser. Image interpolation and resampling. In Handbook of medical imaging, pages 393–420. Academic Press, Inc., 2000.
[33]Ruben T. H. M. Larue, Janna E. van Timmeren, Evelyn E. C. de Jong, Giacomo Feliciani, Ralph T. H. Leijenaar, Wendy M. J. Schreurs, Meindert N. Sosef, Frank H. P. J. Raat, Frans H. R. van der Zande, Marco Das, Wouter J. C. van Elmpt, and Philippe Lambin. Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta oncologica, pages 1–10, sep 2017. URL: https://www.tandfonline.com/doi/full/10.1080/0284186X.2017.1351624 http://www.ncbi.nlm.nih.gov/pubmed/28885084, doi:10.1080/0284186X.2017.1351624.
[34]Martin Vallières, Carolyn R. Freeman, Sonia R. Skamene, and Issam El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in medicine and biology, 60(14):5471–96, jul 2015. URL: http://www.ncbi.nlm.nih.gov/pubmed/26119045, doi:10.1088/0031-9155/60/14/5471.
[35]Martin Vallières, Carolyn R Freeman, Sonia R Skamene, and Issam El Naqa. Data from: a radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. 2015. doi:10.7937/K9/TCIA.2015.7GO2GSKS.
[36]Kenneth Clark, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen Moore, Stanley Phillips, David Maffitt, Michael Pringle, Lawrence Tarbox, and Fred Prior. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging, 26(6):1045–57, dec 2013. URL: http://link.springer.com/10.1007/s10278-013-9622-7 http://www.ncbi.nlm.nih.gov/pubmed/23884657 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3824915, doi:10.1007/s10278-013-9622-7.
[37]G. Collewet, M. Strzelecki, and F. Mariette. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magnetic resonance imaging, 22(1):81–91, jan 2004. URL: http://www.ncbi.nlm.nih.gov/pubmed/14972397, doi:10.1016/j.mri.2003.09.001.
[38]Stephen S. F. Yip and Hugo J. W. L. Aerts. Applications and limitations of radiomics. Physics in medicine and biology, 61(13):R150–66, jul 2016. URL: http://stacks.iop.org/0031-9155/61/i=13/a=R150?key=crossref.134478778713970aff90f16abe110608 http://www.ncbi.nlm.nih.gov/pubmed/27269645 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4927328, doi:10.1088/0031-9155/61/13/R150.
[39]Ernest L. Hall, Richard P. Kruger, J. Samuel, D. Dwyer, Robert W. McLaren, David L. Hall, and Gwilyms Lodwick. A Survey of Preprocessing and Feature Extraction Techniques for Radiographic Images. IEEE Transactions on Computers, C-20(9):1032–1044, 1971. doi:10.1109/T-C.1971.223399.
[40]Joel Max. Quantizing for minimum distortion. IEEE Transactions on Information Theory, 6(1):7–12, 1960. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1057548, doi:10.1109/TIT.1960.1057548.
[41]Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–137, 1982. doi:10.1109/TIT.1982.1056489.
[42]Mathieu Hatt, Mohamed Majdoub, Martin Vallières, Florent Tixier, Catherine Cheze Le Rest, David Groheux, Elif Hindié, Antoine Martineau, Olivier Pradier, Roland Hustinx, Remy Perdrisot, Remy Guillevin, Issam El Naqa, and Dimitris Visvikis. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. Journal of nuclear medicine, 56(1):38–44, jan 2015. URL: http://jnm.snmjournals.org/content/56/1/38.abstractN2 http://www.ncbi.nlm.nih.gov/pubmed/25500829, doi:10.2967/jnumed.114.144055.
[43]Ralph T. H. Leijenaar, Georgi Nalbantov, Sara Carvalho, Wouter J. C. van Elmpt, Esther G. C. Troost, Ronald Boellaard, Hugo J. W. L. Aerts, Robert J. Gillies, and Philippe Lambin. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Scientific reports, 5(August):11075, 2015. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4525145{\&}tool=pmcentrez{\&}rendertype=abstract, doi:10.1038/srep11075.
[44]Floris H. P. van Velden, Gerbrand M. Kramer, Virginie Frings, Ida A. Nissen, Emma R. Mulder, Adrianus J. de Langen, Otto S. Hoekstra, Egbert F. Smit, and Ronald Boellaard. Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Molecular imaging and biology, 18(5):788–95, oct 2016. URL: http://www.ncbi.nlm.nih.gov/pubmed/26920355, doi:10.1007/s11307-016-0940-2.
[45]Marie-Charlotte Desseroit, Florent Tixier, Wolfgang A. Weber, Barry A. Siegel, Catherine Cheze Le Rest, Dimitris Visvikis, and Mathieu Hatt. Reliability of PET/CT Shape and Heterogeneity Features in Functional and Morphologic Components of Non-Small Cell Lung Cancer Tumors: A Repeatability Analysis in a Prospective Multicenter Cohort. Journal of nuclear medicine, 58(3):406–411, mar 2017. URL: http://jnm.snmjournals.org/lookup/doi/10.2967/jnumed.116.180919 http://www.ncbi.nlm.nih.gov/pubmed/27765856 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5331937, arXiv:1610.01390, doi:10.2967/jnumed.116.180919.
[46]Hugo J. W. L. Aerts, Emmanuel Rios-Velazquez, Ralph T. H. Leijenaar, Chintan Parmar, Patrick Grossmann, Sara Cavalho, Johan Bussink, René Monshouwer, Benjamin Haibe-Kains, Derek Rietveld, Frank J. P. Hoebers, Michelle M. Rietbergen, C. René Leemans, André Dekker, John Quackenbush, Robert J. Gillies, and Philippe Lambin. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications, 5:4006, 2014. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4059926{\&}tool=pmcentrez{\&}rendertype=abstract, doi:10.1038/ncomms5006.
[47]Adrien Depeursinge, Antonio Foncubierta-Rodriguez, Dimitri Van De Ville, and Henning Müller. Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Medical image analysis, 18(1):176–96, jan 2014. URL: http://dx.doi.org/10.1016/j.media.2013.10.005 http://www.ncbi.nlm.nih.gov/pubmed/24231667, doi:10.1016/j.media.2013.10.005.
[48]Joost JM van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole Aucoin, Vivek Narayan, Regina GH Beets-Tan, Jean-Christophe Fillion-Robin, Steve Pieper, and Hugo JWL Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer research, 77(21):e104–e107, 2017.
[49]William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169, aug 1987. URL: http://portal.acm.org/citation.cfm?doid=37401.37422 http://portal.acm.org/citation.cfm?doid=37402.37422, doi:10.1145/37402.37422.
[50]Thomas Lewiner, Hélio Lopes, Antônio Wilson Vieira, and Geovan Tavares. Efficient Implementation of Marching Cubes’ Cases with Topological Guarantees. Journal of Graphics Tools, 8(2):1–15, jan 2003. URL: http://www.tandfonline.com/doi/abs/10.1080/10867651.2003.10487582, doi:10.1080/10867651.2003.10487582.
[51]Peer Stelldinger, Longin Jan Latecki, and Marcelo Siqueira. Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE transactions on pattern analysis and machine intelligence, 29(1):126–40, jan 2007. URL: http://www.ncbi.nlm.nih.gov/pubmed/17108388, doi:10.1109/TPAMI.2007.21.
[52]Elaine Johanna Limkin, Sylvain Reuzé, Alexandre Carré, Roger Sun, Antoine Schernberg, Anthony Alexis, Eric Deutsch, Charles Ferté, and Charlotte Robert. The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features. Scientific Reports, 9(1):4329, dec 2019. URL: http://www.nature.com/articles/s41598-019-40437-5, doi:10.1038/s41598-019-40437-5.
[53]Cha Zhang and Tsuhan Chen. Efficient feature extraction for 2D/3D objects in mesh representation. In Proceedings 2001 International Conference on Image Processing, volume 2, 935–938. IEEE, 2001. URL: http://ieeexplore.ieee.org/document/958278/, doi:10.1109/ICIP.2001.958278.
[54]Ivayla Apostolova, Ingo G. Steffen, Florian Wedel, Alexandr Lougovski, Simone Marnitz, Thorsten Derlin, Holger Amthauer, Ralph Buchert, Frank Hofheinz, and Winfried Brenner. Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. European radiology, 24(9):2077–87, sep 2014. URL: http://www.ncbi.nlm.nih.gov/pubmed/24965509, doi:10.1007/s00330-014-3269-8.
[55]Chris Solomon and Toby Breckon. Features. In Fundamentals of Digital Image Processing, chapter 9, pages 235–262. John Wiley & Sons, Ltd, Chichester, UK, jan 2011. URL: http://doi.wiley.com/10.1002/9780470689776.ch9, doi:10.1002/9780470689776.ch9.
[56]Richard M Heiberger and Burt Holland. Statistical Analysis and Data Display. Springer Texts in Statistics. Springer New York, New York, NY, 2015. ISBN 978-1-4939-2121-8. URL: http://link.springer.com/10.1007/978-1-4939-2122-5, doi:10.1007/978-1-4939-2122-5.
[57]Issam El Naqa, Perry W. Grigsby, Aditya Apte, Elizabeth Kidd, Eric Donnelly, Divya Khullar, Summer Chaudhari, Deshan Yang, Martin Schmitt, Richard Laforest, Wade L. Thorstad, and Joseph O. Deasy. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern recognition, 42(6):1162–1171, jun 2009. URL: http://www.ncbi.nlm.nih.gov/pubmed/20161266 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2701316, arXiv:NIHMS150003, doi:10.1016/j.patcog.2008.08.011.
[58]Lisanne V. van Dijk, Charlotte L. Brouwer, Arjen van der Schaaf, Johannes G.M. Burgerhof, Roelof J. Beukinga, Johannes A. Langendijk, Nanna M. Sijtsema, and Roel J.H.M. Steenbakkers. CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva. Radiotherapy and Oncology, 122(2):185–191, feb 2017. URL: http://dx.doi.org/10.1016/j.radonc.2016.07.007 http://linkinghub.elsevier.com/retrieve/pii/S0167814016311999, doi:10.1016/j.radonc.2016.07.007.
[59]Joseph O’Rourke. Finding minimal enclosing boxes. International Journal of Computer and Information Sciences, 14(3):183–199, jun 1985. URL: http://link.springer.com/10.1007/BF00991005, doi:10.1007/BF00991005.
[60]Gill Barequet and Sariel Har-Peled. Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions. Journal of Algorithms, 38(1):91–109, jan 2001. URL: http://www.sciencedirect.com/science/article/pii/S0196677400911271 http://linkinghub.elsevier.com/retrieve/pii/S0196677400911271, doi:10.1006/jagm.2000.1127.
[61]C.K. Chan and S.T. Tan. Determination of the minimum bounding box of an arbitrary solid: an iterative approach. Computers and Structures, 79(15):1433–1449, jun 2001. URL: http://linkinghub.elsevier.com/retrieve/pii/S0045794901000463, doi:10.1016/S0045-7949(01)00046-3.
[62]Maciej A. Mazurowski, Nicholas M. Czarnek, Leslie M. Collins, Katherine B. Peters, and Kal Clark. Predicting outcomes in glioblastoma patients using computerized analysis of tumor shape: preliminary data. In Georgia D. Tourassi and Samuel G. Armato, editors, SPIE Medical Imaging, volume 9785, 97852T. mar 2016. URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2217098, doi:10.1117/12.2217098.
[63]Michael J. Todd and E. Alper Yıldırım. On Khachiyan’s algorithm for the computation of minimum-volume enclosing ellipsoids. Discrete Applied Mathematics, 155(13):1731–1744, aug 2007. doi:10.1016/j.dam.2007.02.013.
[64]Selin Damla Ahipaşaoğlu. Fast algorithms for the minimum volume estimator. Journal of Global Optimization, 62(2):351–370, jun 2015. URL: http://link.springer.com/10.1007/s10898-014-0233-8, doi:10.1007/s10898-014-0233-8.
[65]Leonid G. Khachiyan. Rounding of Polytopes in the Real Number Model of Computation. Mathematics of Operations Research, 21(2):307–320, 1996. URL: http://pubsonline.informs.org/doi/abs/10.1287/moor.21.2.307, doi:10.1287/moor.21.2.307.
[66]Manushka Vaidya, Kimberly M. Creach, Jennifer Frye, Farrokh Dehdashti, Jeffrey D. Bradley, and Issam El Naqa. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiotherapy and oncology, 102(2):239–45, feb 2012. URL: http://dx.doi.org/10.1016/j.radonc.2011.10.014 http://www.ncbi.nlm.nih.gov/pubmed/22098794, doi:10.1016/j.radonc.2011.10.014.
[67]Patrick A. P. Moran. Notes on continuous stochastic phenomena. Biometrika, 37:17–23, 1950.
[68]Mark R. T. Dale, Philip Dixon, Marie-Josée Fortin, Pierre Legendre, Donald E. Myers, and Michael S. Rosenberg. Conceptual and mathematical relationships among methods for spatial analysis. Ecography, 25(5):558–577, 2002. URL: http://dx.doi.org/10.1034/j.1600-0587.2002.250506.x, doi:10.1034/j.1600-0587.2002.250506.x.
[69]Erick Corrêa Da Silva, Aristófanes Corrêa Silva, Anselmo Cardoso De Paiva, and Rodolfo Acatauassu Nunes. Diagnosis of lung nodule using Moran’s index and Geary’s coefficient in computerized tomography images. Pattern Analysis and Applications, 11(1):89–99, 2008. doi:10.1007/s10044-007-0081-y.
[70]Roy C. Geary. The Contiguity Ratio and Statistical Mapping. The Incorporated Statistician, 5(3):115–145, nov 1954. URL: http://www.jstor.org/stable/2986645?origin=crossref, doi:10.2307/2986645.
[71]Richard L. Wahl, Heather Jacene, Yvette Kasamon, and Martin A. Lodge. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. Journal of nuclear medicine, 50 Suppl 1(5):122S–50S, may 2009. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2755245{\&}tool=pmcentrez{\&}rendertype=abstract http://www.ncbi.nlm.nih.gov/pubmed/19403881 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2755245, doi:10.2967/jnumed.108.057307.
[72]Virginie Frings, Floris H. P. van Velden, Linda M. Velasquez, Wendy Hayes, Peter M. van de Ven, Otto S. Hoekstra, and Ronald Boellaard. Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology, 273(2):539–48, nov 2014. URL: http://www.ncbi.nlm.nih.gov/pubmed/24865311, doi:10.1148/radiol.14132807.
[73]Floris H. P. van Velden, Patsuree Cheebsumon, Maqsood Yaqub, Egbert F. Smit, Otto S. Hoekstra, Adriaan A. Lammertsma, and Ronald Boellaard. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. European journal of nuclear medicine and molecular imaging, 38(9):1636–47, sep 2011. URL: http://www.ncbi.nlm.nih.gov/pubmed/21617975 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3151405, doi:10.1007/s00259-011-1845-6.
[74]Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6):610–621, nov 1973. URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0015680481{\&}partnerID=tZOtx3y1 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4309314, doi:10.1109/TSMC.1973.4309314.
[75]M Unser. Sum and difference histograms for texture classification. IEEE transactions on pattern analysis and machine intelligence, 8(1):118–125, 1986. doi:10.1109/TPAMI.1986.4767760.
[76]Adrien Depeursinge and Julien Fageot. Biomedical Texture Operators and Aggregation Functions. In Adrien Depeursinge, Julien Fageot, and Omar Al-Kadi, editors, Biomedical texture analysis, chapter 3, pages 63–101. Academic Press, London, UK, 1st edition, 2017.
[77]Robert M. Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5):786–804, 1979. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1455597, doi:10.1109/PROC.1979.11328.
[78]David A. Clausi. An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian Journal of Remote Sensing, 28(1):45–62, 2002. doi:10.5589/m02-004.
[79]L-K Soh and C Tsatsoulis. Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Transactions on Geoscience and Remote Sensing, 37(2):780–795, 1999.
[80]Mary M. Galloway. Texture analysis using gray level run lengths. Computer Graphics and Image Processing, 4(2):172–179, 1975. URL: http://www.sciencedirect.com/science/article/pii/S0146664X75800086, doi:10.1016/S0146-664X(75)80008-6.
[81]A. Chu, C. M. Sehgal, and J. F. Greenleaf. Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters, 11(6):415–419, 1990. doi:10.1016/0167-8655(90)90112-F.
[82]Belur V. Dasarathy and Edwin B. Holder. Image characterizations based on joint gray level-run length distributions. Pattern Recognition Letters, 12(8):497–502, 1991. doi:10.1016/0167-8655(91)80014-2.
[83]F. Albregtsen, B. Nielsen, and H.E. Danielsen. Adaptive gray level run length features from class distance matrices. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, volume 3, 738–741. IEEE Comput. Soc, 2000. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=903650, doi:10.1109/ICPR.2000.903650.
[84]Guillaume Thibault, Jesús Angulo, and Fernand Meyer. Advanced statistical matrices for texture characterization: application to cell classification. IEEE transactions on bio-medical engineering, 61(3):630–7, mar 2014. URL: http://www.ncbi.nlm.nih.gov/pubmed/24108747, doi:10.1109/TBME.2013.2284600.
[85]Moses Amadasun and Robert King. Textural features corresponding to textural properties. IEEE Transactions on Systems, Man and Cybernetics, 19(5):1264–1273, 1989. doi:10.1109/21.44046.
[86]Chengjun Sun and William G. Wee. Neighboring gray level dependence matrix for texture classification. Computer Vision, Graphics, and Image Processing, 23(3):341–352, sep 1983. URL: http://linkinghub.elsevier.com/retrieve/pii/0734189X83900324, doi:10.1016/0734-189X(83)90032-4.
[87]M. Sollini, L. Cozzi, L. Antunovic, A. Chiti, and M. Kirienko. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Scientific reports, 7(1):358, mar 2017. URL: http://www.nature.com/articles/s41598-017-00426-y http://www.ncbi.nlm.nih.gov/pubmed/28336974 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5428425, doi:10.1038/s41598-017-00426-y.
[88]Sebastian Sanduleanu, Henry C Woodruff, Evelyn E C de Jong, Janna E van Timmeren, Arthur Jochems, Ludwig Dubois, and Philippe Lambin. Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother. Oncol., 127(3):349–360, June 2018.
[89]Alberto Traverso, Leonard Wee, Andre Dekker, and Robert Gillies. Repeatability and reproducibility of radiomic features: a systematic review. Int. J. Radiat. Oncol. Biol. Phys., 102(4):1143–1158, November 2018.
[90]Martin Vallieres, Alex Zwanenburg, Bogdan Badic, Catherine Cheze-Le Rest, Dimitris Visvikis, and Mathieu Hatt. Responsible radiomics research for faster clinical translation. 2017.