

    
      
          
            
  
The image biomarker standardisation initiative

The image biomarker standardisation initiative (IBSI) is an independent
international collaboration which works towards standardising the
extraction of image biomarkers from acquired imaging for the purpose of
high-throughput quantitative image analysis (radiomics). Lack of
reproducibility and validation of radiomic studies is considered to be a
major challenge for the field. Part of this challenge lies in the
scantiness of consensus-based guidelines and definitions for the process
of translating acquired imaging into high-throughput image biomarkers.
The IBSI therefore seeks to provide standardised image biomarker
nomenclature and definitions, a standardised general image processing
workflow, tools for verifying radiomics software implementations and
reporting guidelines for radiomic studies.


Permanent identifiers

The IBSI uses permanent identifiers for image biomarker definitions and
important related concepts such as image processing. These consist of
four-character codes and may be used for reference. Please do not use
page numbers or section numbers as references, as these are subject to
change.



Copyright

This work is a copy-edited version of the final (v10) pre-print version
of the IBSI reference manual, which was licensed under the Creative
Commons Attribution 4.0 International License (CC-BY). The original work
may be cited as: [redacted]

Copyright information regarding the benchmark data sets may be found on
GitHub: https://github.com/theibsi/data_sets
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Introduction

A biomarker is “a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic
intervention” [Atkinson2001]. Biomarkers may be
measured from a wide variety of sources, such as tissue samples, cell
plating, and imaging. The latter are often referred to as imaging
biomarkers [OConnor2016]. Imaging biomarkers consist
of both qualitative biomarkers, which require expert interpretation, and
quantitative biomarkers which are based on mathematical definitions.
Calculation of quantitative imaging biomarkers can be automated, which
enables high-throughput analyses. We refer to such (high-throughput)
quantitative biomarkers as image biomarkers to differentiate them from
qualitative imaging biomarkers. Image biomarkers characterise the
contents of (regions of) an image, such as volume or mean intensity.
Because of the historically close relationship with the computer vision
field, image biomarkers are also referred to as image features. The term
features, instead of biomarkers, will be used throughout the remainder
of the reference manual, as the contents are generally applicable and
not limited to life sciences and medicine only.

This work focuses specifically on the (high-throughput) extraction of
image biomarkers from acquired, reconstructed and stored imaging.
High-throughput quantitative image analysis (radiomics) has shown
considerable growth in e.g. cancer research
[Lambin2017], but the scarceness of consensus
guidelines and definitions has led to it being described as a “wild
frontier” [Caicedo2017]. This reference manual
therefore presents an effort to chart a course through part of this
frontier by presenting consensus-based recommendations, guidelines,
definitions and reference values for image biomarkers and defining a
general radiomics image processing scheme. We hope use of this manual
will improve reproducibility of radiomic studies.

We opted for a specific focus on the computation of image biomarkers
from acquired imaging. Thus, validation of imaging biomarkers, either
viewed in a broader framework such as the one presented by
[OConnor2016], or within smaller-scope settings such
as those presented by [Caicedo2017] and by
[Lambin2017], falls beyond the scope of this work.
Notably, the issue of harmonising and standardising (medical) image
acquisition and reconstruction is being addressed in a more
comprehensive manner by groups such as the Quantitative Imaging
Biomarker Alliance [Sullivan2015][Mulshine2015], the
Quantitative Imaging Network
[Clarke2014][nordstrom2016quantitative], and task
groups and committees of the American Association of Physicists in
Medicine, the European Association for Nuclear Medicine
[Boellaard2015], the European Society of Radiology
(ESR) [EuropeanSocietyofRadiologyESR2013], and the
European Organisation for Research and Treatment of Cancer (EORTC)
[Waterton2012][OConnor2016], among others. Where
overlap does exists, the reference manual refers to existing
recommendations and guidelines.

This reference manual is divided into several chapters that describe
processing of acquired and reconstructed (medical) imaging for
high-throughput computation of image biomarkers
(Chapter 2: Image processing); that define a diverse set of
image biomarkers (Chapter 3: Image features); that
describe guidelines for reporting on radiomic studies and provide
nomenclature for image biomarkers
(Chapter 4: Radiomics reporting guidelines and nomenclature); and that describe the
data sets and image processing configurations used to find reference
values for image biomarkers (Chapter 5: Reference data sets).




          

      

      

    

  

    
      
          
            
  
Image processing

Image processing is the sequence of operations required to derive image
biomarkers (features) from acquired images. In the context of this work
an image is defined as a three-dimensional (3D) stack of two-dimensional
(2D) digital image slices. Image slices are stacked along the
\(z\)-axis. This stack is furthermore assumed to possess the same
coordinate system, i.e. image slices are not rotated or translated (in
the \(xy\)-plane) with regards to each other. Moreover, digital
images typically possess a finite resolution. Intensities in an image
are thus located at regular intervals, or spacing. In 2D such regular
positions are called pixels, whereas in 3D the term voxels is used.
Pixels and voxels are thus represented as the intersections on a
regularly spaced grid. Alternatively, pixels and voxels may be
represented as rectangles and rectangular cuboids. The centers of the
pixels and voxels then coincide with the intersections of the regularly
spaced grid. Both representations are used in the document.

Pixels and voxels contain an intensity value for each channel of the
image. The number of channels depends on the imaging modality. Most
medical imaging generates single-channel images, whereas the number of
channels in microscopy may be greater, e.g. due to different stainings.
In such multi-channel cases, features may be extracted for each separate
channel, a subset of channels, or alternatively, channels may be
combined and converted to a single-channel representation. In the
remainder of the document we consider an image as if it only possesses a
single channel.

The intensity of a pixel or voxel is also called a grey level or grey
tone, particularly in single-channel images. Though practically there
is no difference, the terms grey level or grey tone are more
commonly used to refer to discrete intensities, including discretised
intensities.

Image processing may be conducted using a wide variety of schemes. We
therefore designed a general image processing scheme for image feature
calculation based on schemes used within scientific literature
[Hatt2016]. The image processing scheme is shown in
Fig. 1. The processing steps referenced in the figure are
described in detail within this chapter.


[image: _images/Processing_simplifiedv6.png]

Fig. 1 Image processing scheme for image feature calculation. Depending on
the specific imaging modality and purpose, some steps may be omitted.
The region of interest (ROI) is explicitly split into two masks,
namely an intensity and morphological mask, after interpolation to
the same grid as the interpolated image. Feature calculation is
expanded to show the different feature families with specific
pre-processing. IH: intensity histogram; IVH: intensity-volume
histogram; GLCM: grey level cooccurrence matrix; GLRLM: grey level
run length matrix; GLSZM: grey level size zone matrix; NGTDM:
neighbourhood grey tone difference matrix; NGLDM: Neighbouring grey
level dependence matrix; GLDZM: grey level distance zone matrix;
*Discretisation of IVH differs from IH and texture features (see
Intensity-volume histogram features).




Data conversion

23XZ
Some imaging modalities require conversion of raw image data into a more
meaningful presentation, e.g. standardised uptake values
(SUV) [Boellaard2015]. This is performed during the
data conversion step. Assessment of data conversion methods falls
outside the scope of the current work.



Image post-acquisition processing

PCDE
Images are post-processed to enhance image quality. For instance,
magnetic resonance imaging (MRI) contains both Gaussian and Rician noise
[Gudbjartsson1995] and may benefit from denoising. As
another example, intensities measured using MR may be non-uniform across
an image and could require correction
[Sled1998][Vovk2007][Balafar2010]. FDG-PET-based may
furthermore be corrected for partial volume effects
[Soret2007][Boussion2009] and noise
[LePogam2013][ElNaqa2017]. In CT imaging, metal
objects, e.g. pacemakers and tooth implants, introduce artifacts and may
require artifinterpact suppression [Gjesteby2016].
Microscopy images generally benefit from field-of-view illumination
correction as illumination is usually inhomogeneous due to the
light-source or the optical path
[Caicedo2017][Smith2015].

Evaluation and standardisation of various image post-acquisition
processing methods falls outside the scope of the current work. Note
that vendors may provide or implement software to perform noise
reduction and other post-processing during image reconstruction. In such
cases, additional post-acquisition processing may not be required.



Segmentation

OQYT
High-throughput image analysis, within the feature-based paradigm,
relies on the definition of regions of interest (ROI). ROIs are used to
define the region in which features are calculated. What constitutes an
ROI depends on the imaging and the study objective. For example, in 3D
microscopy of cell plates, cells are natural ROIs. In medical imaging of
cancer patients, the tumour volume is a common ROI. ROIs can be defined
manually by experts or (semi-)automatically using algorithms.

From a process point-of-view, segmentation leads to the creation of an
ROI mask \(\mathbf{R}\), for which every voxel
\(j \in \mathbf{R}\) (\(R_j\)) is defined as:


\[\begin{split}R_j =\begin{cases}
1\qquad j \text{ in ROI}\\
0\qquad \text{otherwise}\\
\end{cases}\end{split}\]

ROIs are typically stored with the accompanying image. Some image
formats directly store ROI masks as voxels (e.g. NIfTI, NRRD and
DICOM Segmentation), and generating the ROI mask is conducted by
loading the corresponding image. In other cases the ROI is saved as a
set of \((x,y,z)\) points that define closed loops of (planar)
polygons, for example within DICOM RTSTRUCT or DICOM SR files.
In such cases, we should determine which voxel centers lie within the
space enclosed by the contour polygon in each slice to generate the ROI
mask.

A common method to determine whether a point in an image slice lies
inside a 2D polygon is the crossing number algorithm, for which
several implementations exist [Schirra2008]. The main
concept behind this algorithm is that for any point inside the polygon,
any line originating outside the polygon will cross the polygon an
uneven number of times. A simple example is shown in
Fig. 2. The implementation in the example makes use of the
fact that the ROI mask is a regular grid to scan entire rows at a time.
The example implementation consists of the following steps:


	(optional) A ray is cast horizontally from outside the polygon for
each of the \(n\) image rows. As we iterate over the rows, it is
computationally beneficial to exclude polygon edges that will not be
crossed by the ray for the current row \(j\). If the current row
has \(y\)-coordinate \(y_j\), and edge \(k\) has two
vertices with \(y\)-coordinates \(y_{k1}\) and
\(y_{k2}\), the ray will not cross the edge if both vertices lie
either above or below \(y_j\), i.e. \(y_j < y_{k1}, y_{k2}\)
or \(y_j > y_{k1}, y_{k2}\). For each row \(j\), find those
polygon edges whose \(y\)-component of the vertices do not both
lie on the same side of the row coordinate \(y_j\). This step is
used to limit calculation of intersection points to only those that
cross a ray cast from outside the polygon – e.g. ray with origin
\((-1, y_j)\) and direction \((1,0)\). This an optional step.


	Determine intersection points \(x_i\) of the (remaining) polygon
edges with the ray.


	Iterate over intersection points and add \(1\) to the count of
each pixel center with \(x \geq x_i\).


	Apply the even-odd rule. Pixels with an odd count are inside the
polygon, whereas pixels with an even count are outside.




Note that the example represents a relatively naive implementation that
will not consistently assign voxel centers positioned on the polygon
itself to the interior.


[image: _images/pointGrid.png]

Fig. 2 Simple algorithm to determine which pixels are inside a 2D polygon.
The suggested implementation consists of four steps: (1) Omit edges
that will not intersect with the current row of voxel centers. (2)
Calculate intersection points of edges I and II with the ray for the
current row. (3) Determine the number of intersections crossed from
ray origin to the row voxel centers. (4) Apply even-odd rule to
determine whether voxel centers are inside the polygon.





Interpolation

VTM2
Texture feature sets require interpolation to isotropic voxel spacing to
be rotationally invariant, and to allow comparison between image data
from different samples, cohorts or batches. Voxel interpolation affects
image feature values as many image features are sensitive to changes in
voxel size
[Yan2015][Bailly2016][Altazi2017][Shafiq-ul-Hassan2017][Shiri2017].
Maintaining consistent isotropic voxel spacing across different
measurements and devices is therefore important for reproducibility. At
the moment there are no clear indications whether upsampling or
downsampling schemes are preferable. Consider, for example, an image
stack of slices with \(1.0 \times 1.0 \times 3.0~\text{mm}^3\) voxel
spacing. Upsampling to \(1.0 \times 1.0 \times 1.0~\text{mm}^3\)
requires inference and introduces artificial information, while
conversely downsampling to the largest dimension
(\(3.0 \times 3.0 \times 3.0~\text{mm}^3\)) incurs information loss.
Multiple-scaling strategies potentially offer a good trade-off
[Vallieres2017]. Note that downsampling may introduce
image aliasing artifacts. Downsampling may therefore require
anti-aliasing filters prior to filtering
[Mackin2017][Zwanenburg2018].

While in general 3D interpolation algorithms are used to interpolate 3D
images, 2D interpolation within the image slice plane may be recommended
in some situations. In 2D interpolation voxels are not interpolated
between slices. This may be beneficial if, for example, the spacing
between slices is large compared to the desired voxel size, and/or
compared to the in-plane spacing. Applying 3D interpolation would either
require inferencing a large number of voxels between slices
(upsampling), or the loss of a large fraction of in-plane information
(downsampling). The disadvantage of 2D interpolation is that voxel
spacing is no longer isotropic, and as a consequence texture features
can only be calculated in-plane.


Interpolation algorithms

Interpolation algorithms translate image intensities from the original
image grid to an interpolation grid. In such grids, voxels are spatially
represented by their center. Several algorithms are commonly used for
interpolation, such as nearest neighbour, trilinear, tricubic
convolution and tricubic spline interpolation. In short, nearest
neighbour interpolation assigns the intensity of the most nearby voxel
in the original grid to each voxel in the interpolation grid. Trilinear
interpolation uses the intensities of the eight most nearby voxels in
the original grid to calculate a new interpolated intensity using linear
interpolation. Tricubic convolution and tricubic spline
interpolation draw upon a larger neighbourhood to evaluate a smooth,
continuous third-order polynomial at the voxel centers in the
interpolation grid. The difference between tricubic convolution and
tricubic spline interpolation lies in the implementation. Whereas
tricubic spline interpolation evaluates the smooth and continuous
third-order polynomial at every voxel center, tricubic convolution
approximates the solution using a convolution filter. Though tricubic
convolution is faster, with modern hardware and common image sizes, the
difference in execution speed is practically meaningless. Both
interpolation algorithms produce similar results, and both are often
referred to as tricubic interpolation.

While no consensus exists concerning the optimal choice of interpolation
algorithm, trilinear interpolation is usually seen as a conservative
choice. It does not lead to the blockiness produced by nearest
neighbour interpolation that introduces bias in local textures
[Hatt2016]. Nor does it lead to out-of-range
intensities which may occur due to overshoot with tricubic and higher
order interpolations. The latter problem can occur in acute intensity
transitions, where the local neighbourhood itself is not sufficiently
smooth to evaluate the polynomial within the allowed range. Tricubic
methods, however, may retain tissue contrast differences better.
Particularly when upsampling, trilinear interpolation may act as a
low-pass filter which suppresses higher spatial frequencies and cause
artefacts in high-pass spatial filters. Interpolation algorithms and
their advantages and disadvantages are treated in more detail elsewhere,
e.g. [thevenaz2000image].

In a phantom study, [Larue2017] compared nearest
neighbour, trilinear and tricubic interpolation and indicated that
feature reproducibility is dependent on the selected interpolation
algorithm, i.e. some features were more reproducible using one
particular algorithm.



Rounding image intensities after interpolation

68QD
Image intensities may require rounding after interpolation, or the
application of cut-off values. For example, in CT images intensities
represent Hounsfield Units, and these do not take non-integer values.
Following voxel interpolation, interpolated CT intensities are thus
rounded to the nearest integer.



Partial volume effects in the ROI mask

E8H9
If the image on which the ROI mask was defined, is interpolated after
the ROI was segmented, the ROI mask \(\mathbf{R}\) should likewise
be interpolated to the same dimensions. Interpolation of the ROI mask is
best conducted using either the nearest neighbour or trilinear
interpolation methods, as these are guaranteed to produce meaningful
masks. Trilinear interpolation of the ROI mask leads to partial volume
effects, with some voxels containing fractions of the original voxels.
Since a ROI mask is a binary mask, such fractions need to be binarised
by setting a partial volume threshold \(\delta\):


\[\begin{split}R_j=\begin{cases}
1\qquad R_{interp,j} \geq \delta\\
0\qquad R_{interp,j} < \delta
\end{cases}\end{split}\]

A common choice for the partial volume threshold is \(\delta=0.5\).
For nearest neighbour interpolation the ROI mask does not contain
partial volume fractions, and may be used directly.

Interpolation results depend on the floating point representation used
for the image and ROI masks. Floating point representations should at
least be full precision (32-bit) to avoid rounding errors.



Interpolation grid

UMPJ
Interpolated voxel centers lie on the intersections of a regularly
spaced grid. Grid intersections are represented by two coordinate
systems. The first coordinate system is the grid coordinate system, with
origin at \((0.0, 0.0, 0.0)\) and distance between directly
neighbouring voxel centers (spacing) of \(1.0\). The grid coordinate
system is the coordinate system typically used by computers, and
consequentially, by interpolation algorithms. The second coordinate
system is the world coordinate system, which is typically found in
(medical) imaging and provides an image scale. As the desired isotropic
spacing is commonly defined in world coordinate dimensions, conversions
between world coordinates and grid coordinates are necessary, and are
treated in more detail after assessing grid alignment methods.

Grid alignment affects feature values and is non-trivial. Three common
grid alignments may be identified, and are shown in
Fig. 3:


	Fit to original grid (58MB). In this case the interpolation
grid is deformed so that the voxel centers at the grid intersections
overlap with the original grid vertices. For an original
\(4\times4\) voxel grid with spacing \((3.00, 3.00)\) mm and
a desired interpolation spacing of \((2.00, 2.00)\) mm we first
calculate the extent of the original voxel grid in world coordinates
leading to an extent of
\(((4-1)\,3.00, ((4-1)\,3.00) = (9.00, 9.00)\) mm. In this case
the interpolated grid will not exactly fit the original grid.
Therefore we try to find the closest fitting grid, which leads to a
\(6\times 6\) grid by rounding up \((9.00/2.00, 9.00/2.00)\).
The resulting grid has a grid spacing of \((1.80, 1.80)\) mm in
world coordinates, which differs from the desired grid spacing of
\((2.00, 2.00)\) mm.


	Align grid origins (SBKJ). A simple approach which conserves
the desired grid spacing is the alignment of the origins of the
interpolation and original grids. Keeping with the same example, the
interpolation grid is \((6 \times 6)\). The resulting voxel grid
has a grid spacing of \((2.00, 2.00)\) mm in world coordinates.
By definition both grids are aligned at the origin,
\((0.00, 0.00)\).


	Align grid centers (3WE3). The position of the origin may
depend on image meta-data defining image orientation. Not all
software implementations may process this meta-data the same way. An
implementation-independent solution is to align both grids on the
grid center. Again, keeping with the same example, the interpolation
grid is \((6 \times 6)\). Thus, the resulting voxel grid has a
grid spacing of \((2.00, 2.00)\) mm in world coordinates.




Align grid centers is recommended as it is implementation-independent
and achieves the desired voxel spacing. Technical details of
implementing align grid centers are described below.



Interpolation grid dimensions

026Q
The dimensions of the interpolation grid are determined as follows. Let
\(n_a\) be the number of points along one axis of the original grid
and \(s_{a,w}\) their spacing in world coordinates. Then, let
\(s_{b,w}\) be the desired spacing after interpolation. The axial
dimension of the interpolated mesh grid is then:


\[n_b = \left\lceil \frac{n_a s_a}{s_b}\right\rceil\]

Rounding towards infinity guarantees that the interpolation grid exists
even when the original grid contains few voxels. However, it also means
that the interpolation mesh grid is partially located outside of the
original grid. Extrapolation is thus required. Padding the original grid
with the intensities at the boundary is recommended. Some
implementations of interpolation algorithms may perform this padding
internally.



Interpolation grid position

QCY4
For the align grid centers method, the positions of the interpolation
grid points are determined as follows. As before, let \(n_a\) and
\(n_b\) be the dimensions of one axis in the original and
interpolation grid, respectively. Moreover, let \(s_{a,w}\) be the
original spacing and \(s_{b,w}\) the desired spacing for the same
axis in world coordinates. Then, with \(x_{a,w}\) the origin of the
original grid in world coordinates, the origin of the interpolation grid
is located at:


\[x_{b,w} = x_{a,w} + \frac{s_a (n_a - 1) - s_b (n_b - 1)}{2}\]

In the grid coordinate system, the original grid origin is located at
\(x_{a,g} = 0\). The origin of the interpolation grid is then
located at:


\[x_{b,g} = \frac{1}{2}\left(n_a - 1 - \frac{s_{b,w}}{s_{a,w}} \left(n_b -1\right) \right)\]

Here the fraction \(s_{b,w}/s_{a,w}= s_{b,g}\) is the desired
spacing in grid coordinates. Thus, the interpolation grid points along
the considered axis are located at grid coordinates:


\[x_{b,g},\,x_{b,g} + s_{b,g},\,x_{b,g} + 2s_{b,g},\,\ldots,\,x_{b,g} + (n_b-1)s_{b,g}\]

Naturally, the above description applies to each grid axis.


[image: _images/InterpolationGrids.png]

Fig. 3 Different interpolation mesh grids based on an original
\(4\times 4\) grid with \((3.00, 3.00)\) mm spacing. The
desired interpolation spacing is \((2.00, 2.00)\) mm. Fit to
original grid creates an interpolation mesh grid that overlaps with
the corners of the original grid. Align grid origins creates an
interpolation mesh grid that is positioned at the origin of the
original grid. Align grid centers creates an interpolation grid
that is centered on the center of original and interpolation grids.




[image: _images/VoxelReSegmentationv2.png]

Fig. 4 Example showing how intensity and morphological masks may differ due
to re-segmentation. (1) The original region of interest (ROI) is
shown with pixel intensities. (2) Subsequently, the ROI is
re-segmented to only contain values in the range \([1,6]\).
Pixels outside this range are marked for removal from the intensity
mask. (3a) Resulting morphological mask, which is identical to the
original ROI. (3b) Re-segmented intensity mask. Note that due to
re-segmentation, intensity and morphological masks are different.






Re-segmentation

IF9H
Re-segmentation entails updating the ROI mask \(\mathbf{R}\) based
on corresponding voxel intensities \(\mathbf{X}_{gl}\).
Re-segmentation may be performed to exclude voxels from a previously
segmented ROI, and is performed after interpolation. An example use
would be the exclusion of air or bone voxels from an ROI defined on CT
imaging. Two common re-segmentation methods are described in this
section. Combining multiple re-segmentation methods is possible. In this
case, the intersection of the intensity ranges defined by the
re-segmentation methods is used.


[image: _images/resegmentation.png]

Fig. 5 Re-segmentation example based on a CT-image. The masked region (blue)
is re-segmented to create an intensity mask (orange). Examples using
three different re-segmentation parameter sets are shown. The bottom
right combines the range and outlier re-segmentation, and the
resulting mask is the intersection of the masks in the other two
examples. Image data from Vallières et al. [Vallieres2015][Vallieres2015-hv][Clark2013].




Intensity and morphological masks of an ROI

ECJF
Conventionally, an ROI consists of a single mask. However,
re-segmentation may lead to exclusion of internal voxels, or divide the
ROI into sub-volumes. To avoid undue complexity by again updating the
re-segmented ROI for a more plausible morphology, we define two separate
ROI masks.

The morphological mask (G5KJ) is not re-segmented and maintains the
original morphology as defined by an expert and/or (semi-)automatic
segmentation algorithms.

The intensity mask (SEFI) can be re-segmented and will contain only
the selected voxels. For many feature families, only this is important.
However, for morphological and grey level distance zone matrix (GLDZM)
feature families, both intensity and morphological masks are used. A
two-dimensional schematic example is shown in
Fig. 4, and a real
example is shown in
Fig. 5.



Range re-segmentation

USB3
Re-segmentation may be performed to remove voxels from the intensity
mask that fall outside of a specified range. An example is the exclusion
of voxels with Hounsfield Units indicating air and bone tissue in the
tumour ROI within CT images, or low activity areas in PET images. Such
ranges of intensities of included voxels are usually presented as a
closed interval \(\left[ a,b\right]\) or half-open interval
\(\left[a,\infty\right)\), respectively. For arbitrary intensity
units (found in e.g. raw MRI data, uncalibrated microscopy images, and
many spatial filters), no re-segmentation range can be provided.

When a re-segmentation range is defined by the user, it needs to be
propagated and used for the calculation of features that require a
specified intensity range (e.g. intensity-volume histogram features)
and/or that employs fixed bin size discretisation. Recommendations for
the possible combinations of different imaging intensity definitions,
re-segmentation ranges and discretisation algorithms are provided in
Table 1.



Intensity outlier filtering

7ACA
ROI voxels with outlier intensities may be removed from the intensity
mask. One method for defining outliers was suggested by
[Vallieres2015] after
[Collewet2004]. The mean \(\mu\) and standard
deviation \(\sigma\) of grey levels of voxels assigned to the ROI
are calculated. Voxels outside the range
\(\left[\mu - 3\sigma, \mu + 3\sigma\right]\) are subsequently
excluded from the intensity mask.




ROI extraction

1OBP

[image: _images/roi_extraction.png]

Fig. 6 Masking of an image by the ROI mask during ROI extraction.
Intensities outside the ROI are excluded. Image data from Vallières
et al. [Vallieres2015][Vallieres2015-hv][Clark2013].



Many feature families require that the ROI is isolated from the
surrounding voxels. The ROI intensity mask is used to extract the image
volume to be studied. Excluded voxels are commonly replaced by a
placeholder value, often NaN. This placeholder value may then used to
exclude these voxels from calculations. Voxels included in the ROI mask
retain their original intensity. An example is shown in
Fig. 6.



Intensity discretisation

4R0B
Discretisation or quantisation of image intensities inside the ROI is
often required to make calculation of texture features tractable
[Yip2016], and possesses noise-suppressing properties
as well. An example of discretisation is shown in
Fig. 7.

Two approaches to discretisation are commonly used. One involves the
discretisation to a fixed number of bins, and the other discretisation
with a fixed bin width. As we will observe, there is no inherent
preference for one or the other method. However, both methods have
particular characteristics (as described below) that may make them
better suited for specific purposes. Note that the lowest bin always has
value \(1\), and not \(0\). This ensures consistency for
calculations of texture features, where for some features grey level
\(0\) is not allowed.


[image: _images/discretisation.png]

Fig. 7 Discretisation of two different 18F-FDG-PET images with
SUVmax of \(27.8\) (A) and \(6.6\) (B). Fixed bin
number discretisation adjust the contrast between the two images,
with the number of bins determining the coarseness of the discretised
image. Fixed bin size discretisation leaves the contrast
differences between image A and B intact. Increasing the bin size
increases the coarseness of the discretised image. Image data from
Vallières et al.
[Vallieres2015][Vallieres2015-hv][Clark2013].




Fixed bin number

K15C
In the fixed bin number method, intensities \(X_{gl}\) are
discretised to a fixed number of \(N_g\) bins. It is defined as
follows:


\[\begin{split}X_{d,k} = \begin{cases}
\left\lfloor N_g \frac{X_{gl,k}-X_{gl,min}}{X_{gl,max}-X_{gl,min}}\right\rfloor  + 1 & X_{gl,k}<X_{gl,max}\\
N_g & X_{gl,k}=X_{gl,max}
\end{cases}\end{split}\]

In short, the intensity \(X_{gl,k}\) of voxel \(k\) is
corrected by the lowest occurring intensity \(X_{gl,min}\) in the
ROI, divided by the bin width
\(\left(X_{gl,max}-X_{gl,min}\right)/N_g\), and subsequently rounded
down to the nearest integer (floor function).

The fixed bin number method breaks the relationship between image
intensity and physiological meaning (if any). However, it introduces a
normalising effect which may be beneficial when intensity units are
arbitrary (e.g. raw MRI data and many spatial filters), and where
contrast is considered important. Furthermore, as values of many
features depend on the number of grey levels found within a given ROI,
the use of a fixed bin number discretisation algorithm allows for a
direct comparison of feature values across multiple analysed ROIs (e.g.
across different samples).



Fixed bin size

Q3RU
Fixed bin size discretisation is conceptually simple. A new bin is
assigned for every intensity interval with width \(w_b\); i.e.
\(w_b\) is the bin width, starting at a minimum \(X_{gl,min}\).
The minimum intensity may be a user-set value as defined by the lower
bound of the re-segmentation range, or data-driven as defined by the
minimum intensity in the ROI
\(X_{gl,min}=\text{min} \left( X_{gl} \right)\). In all cases, the
method used and/or set minimum value must be clearly reported. However,
to maintain consistency between samples, we strongly recommend to always
set the same minimum value for all samples as defined by the lower bound
of the re-segmentation range (e.g. HU of -500 for CT, SUV of 0 for PET,
etc.). In the case that no re-segmentation range may be defined due to
arbitrary intensity units (e.g. raw MRI data and many spatial filters),
the use of the fixed bin size discretisation algorithm is not
recommended.

The fixed bin size method has the advantage of maintaining a direct
relationship with the original intensity scale, which could be useful
for functional imaging modalities such as PET.

Discretised intensities are computed as follows:


\[X_{d,k}=\left\lfloor \frac{X_{gl,k}-X_{gl,min}}{w_b}\right\rfloor  + 1\]

In short, the minimum intensity \(X_{gl,min}\) is subtracted from
intensity \(X_{gl,k}\) in voxel \(k\), and then divided by the
bin width \(w_b\). The resulting value is subsequently rounded down
to the nearest integer (floor function), and \(1\) is added to
arrive at the discretised intensity.



Other methods

Many other methods and variations for discretisation exist, but are not
described in detail here. [Vallieres2015] described
the use of intensity histogram equalisation and Lloyd-Max algorithms
for discretisation. Intensity histogram equalisation involves
redistributing intensities so that the resulting bins contain a similar
number of voxels, i.e. contrast is increased by flattening the histogram
as much as possible [Hall1971]. Histogram
equalisation of the ROI imaging intensities can be performed before any
other discretisation algorithm (e.g. FBN, FSB, etc.), and it also
requires the definition of a given number of bins in the histogram to be
equalised. The Lloyd-Max algorithm is an iterative clustering method
that seeks to minimise mean squared discretisation errors
[Max1960][Lloyd1982].



Recommendations

The discretisation method that leads to optimal feature inter- and
intra-sample reproducibility is modality-dependent. Usage
recommendations for the possible combinations of different imaging
intensity definitions, re-segmentation ranges and discretisation
algorithms are provided in Table 1. Overall, the
discretisation choice has a substantial impact on intensity
distributions, feature values and reproducibility
[Hatt2015][Leijenaar2015a][vanVelden2016][Desseroit2017][Hatt2016][Shafiq-ul-Hassan2017][Altazi2017].


Table 1 Recommendations for the possible combinations of different imaging intensity definitions, resegmentation ranges and discretisation algorithms.
Checkmarks (✔) represent recommended combinations of resegmentation range and discretisation algorithm, whereas crossmarks (✕) represent non-recommended combinations.
(1) PET and CT are examples of imaging modalities with calibrated intensity units (e.g. SUV and HU, respectively), and raw MRI data of arbitrary intensity units.
(2) Fixed bin number (FBN) discretisation uses the actual range of intensities in the analysed ROI (re-segmented or not), and not the re-segmentation range itself (when defined).
(3) Fixed bin size (FBS) discretisation uses the lower bound of the re-segmentation range as the minimum set value. When the re-segmentation range is not or cannot be defined (e.g. arbitrary intensity units), the use of the FBS algorithm is not recommended.

	Imaging intensity units\(^{(1)}\)

	Re-segmentation  range

	FBN\(^{(2)}\)

	FBS\(^{(3)}\)





	
	\([a,b]\)

	✔

	✔



	calibrated

	\([a,\infty)\)

	✔

	✔



	
	none

	✔

	✕



	
	
	
	


	arbitrary

	none

	✔

	✕









Feature calculation

Feature calculation is the final processing step where feature
descriptors are used to quantify characteristics of the ROI. After
calculation such features may be used as image biomarkers by relating
them to physiological and medical outcomes of interest. Feature
calculation is handled in full details in the next chapter.

Let us recall that the image processing steps leading to image biomarker
calculations can be performed in many different ways, notably in terms
of spatial filtering, segmentation, interpolation and discretisation
parameters. Furthermore, it is plausible that different texture features
will better quantify the characteristics of the ROI when computed using
different image processing parameters. For example, a lower number of
grey levels in the discretisation process (e.g. 8 or 16) may allow to
better characterize the sub-regions of the ROI using grey level size
zone matrix (GLSZM) features, whereas grey level co-occurence matrix (GLCM)
features may be better modeled with a higher number of grey levels (e.g.
32 or 64). Overall, these possible differences opens the door to the
optimization of image processing parameters for each different feature
in terms of a specific objective. For the specific case of the
optimization of image interpolation and discretisation prior to texture
analysis, Vallières et al. [Vallieres2015] have
named this process texture optimization. The authors notably suggested
that the texture optimization process could have significant influence
of the prognostic capability of subsequent features. In another
study [Vallieres2017], the authors constructed
predictive models using textures calculated from all possible
combinations of PET and CT images interpolated at four isotropic
resolutions and discretised with two different algorithms and four
numbers of grey levels.





          

      

      

    

  

    
      
          
            
  
Image features

In this chapter we will describe a set of quantitative image features
together with the reference values established by the IBSI. This feature
set builds upon the feature sets proposed by
[Aerts2014] and [Hatt2016], which
are themselves largely derived from earlier works. References to earlier
work are provided whenever they could be identified.

Reference values were derived for each feature. A table of reference
values contains the values that could be reliably reproduced, within a
tolerance margin, for the reference data sets (see
Reference data sets). Consensus on the validity of each
reference value is also noted. Consensus can have four levels, depending
on the number of teams that were able to produce the same value during
the standardization process: weak (\(<3\) matches), moderate
(\(3\) to \(5\) matches), strong (\(6\) to \(9\)
matches), and very strong (\(\geq 10\) matches). If consensus on a
reference value was weak or if it could not be reproduced by an absolute
majority of teams, it was not considered standardized. Such features do
currently not have reference values, and should not be used.

The set of features can be divided into a number of families, of which
intensity-based statistical, intensity histogram-based, intensity-volume
histogram-based, morphological features, local intensity, and texture
matrix-based features are treated here. All texture matrices are
rotationally and translationally invariant. Illumination invariance of
texture matrices may be achieved by particular image post-acquisition
schemes, e.g. histogram matching. None of the texture matrices are
scale invariant, a property which can be useful in many (biomedical)
applications. What the presented texture matrices lack, however, is
directionality in combination with rotation invariance. These may be
achieved by local binary patterns and steerable filters, which however
fall beyond the scope of the current work. For these and other texture
features, see [Depeursinge2014].

Features are calculated on the base image, as well as images transformed
using wavelet or Gabor filters). To calculate features, it is assumed
that an image segmentation mask exists, which identifies the voxels
located within a region of interest (ROI). The ROI itself consists of
two masks, an intensity mask and a morphological mask. These masks may
be identical, but not necessarily so, as described in the section on
Re-segmentation.

Several feature families require additional image processing steps
before feature calculation. Notably intensity histogram and texture
feature families require prior discretisation of intensities into grey
level bins. Other feature families do not require discretisation before
calculations. For more details on image processing, see
Fig. 1 in the previous chapter.

Below is an overview table that summarises image processing requirements
for the different feature families.


Table 2 Feature families and required image processing. For each feature family, the number of features in the document, the required input of a morphological (morph.) and/or intensity (int.) ROI mask, as well as the requirement of image discretisation (discr.) is provided. a The entire image volume should be available when computing local intensity features. b Image discretisation for the intensity-volume histogram is performed with finer discretisation than required for e.g. textural features.

	
	
	ROI mask

	
	


	Feature family

	count

	morph.

	int.

	discr.





	morphology

	29

	✔

	✔

	✕



	local intensity

	2

	✕

	✔ a

	✕



	intensity-based statistics

	18

	✕

	✔

	✕



	intensity histogram

	23

	✕

	✔

	✔



	intensity-volume histogram

	5

	✕

	✔

	✔ b



	grey level co-occurrence matrix

	25

	✕

	✔

	✔



	grey level run length matrix

	16

	✕

	✔

	✔



	grey level size zone matrix

	16

	✕

	✔

	✔



	grey level distance zone matrix

	16

	✔

	✔

	✔



	neighbourhood grey tone difference matrix

	5

	✕

	✔

	✔



	neighbouring grey level dependence matrix

	17

	✕

	✔

	✔






Though image processing parameters affect feature values, three other
concepts influence feature values for many features: distance, feature
aggregation and distance weighting. These are described below.


Grid distances

MPUJ
Grid distance is an important concept that is used by several feature
families, particularly texture features. Grid distances can be measured
in several ways. Let \(\mathbf{m}=\left(m_x,m_y,m_z\right)\) be the
vector from a center voxel at
\(\mathbf{k}=\left(k_x,k_y,k_z\right)\) to a neighbour voxel at
\(\mathbf{k}+\mathbf{m}\). The following norms (distances) are used:


	\(\ell_1\) norm or Manhattan norm (LIFZ):


\[\|\mathbf{m}\|_1 = |m_x| + |m_y| + |m_z|\]



	\(\ell_2\) norm or Euclidean norm (G9EV):


\[\|\mathbf{m}\|_2 = \sqrt{m_x^2 + m_y^2 + m_z^2}\]



	\(\ell_{\infty}\) norm or Chebyshev norm (PVMT):


\[\|\mathbf{m}\|_{\infty} = \text{max}(|m_x|,|m_y|,|m_z|)\]





An example of how the above norms differ in practice is shown in Fig. 8
.


[image: _images/distance_norms.png]

Fig. 8 Grid neighbourhoods for distances up to \(3\) according to
Manhattan, Euclidean and Chebyshev norms. The orange pixel is considered
the center pixel. Dark blue pixels have distance \(\delta=1\), blue
pixels \(\delta\leq2\) and light blue pixels \(\delta\leq3\) for
the corresponding norm.





Feature aggregation

5QB6
Features from some families may be calculated from, e.g. slices. As a
consequence, multiple values for the same feature may be computed.
These different values should be combined into a single value for many
common purposes. This process is referred to as feature aggregation.
Feature aggregation methods depend on the family, and are detailed in
the family description.



Distance weighting

6CK8
Distance weighting is not a default operation for any of the texture
families, but is implemented in software such as PyRadiomics
[VanGriethuysen2017]. It may for example be used to
put more emphasis on local intensities.



Morphological features

HCUG
Morphological features describe geometric aspects of a region of
interest (ROI), such as area and volume. Morphological features are
based on ROI voxel representations of the volume. Three voxel
representations of the volume are conceivable:


	The volume is represented by a collection of voxels with each voxel
taking up a certain volume (LQD8).


	The volume is represented by a voxel point set \(\mathbf{X}_{c}\)
that consists of coordinates of the voxel centers (4KW8).


	The volume is represented by a surface mesh (WRJH).




We use the second representation when the inner structure of the volume
is important, and the third representation when only the outer surface
structure is important. The first representation is not used outside
volume approximations because it does not handle partial volume effects
at the ROI edge well, and also to avoid inconsistencies in feature
values introduced by mixing representations in small voxel volumes.



Mesh-based representation

A mesh-based representation of the outer surface allows consistent
evaluation of the surface volume and area independent of size.
Voxel-based representations lead to partial volume effects and
over-estimation of the surface area. The surface of the ROI volume is
translated into a triangle mesh using a meshing algorithm. While
multiple meshing algorithms exist, we suggest the use of the Marching
Cubes algorithm [Lorensen1987][Lewiner2003] because
of its widespread availability in different programming languages and
reasonable approximation of the surface area and volume
[Stelldinger2007]. In practice, mesh-based feature
values depend upon the meshing algorithm and small differences may occur
between implementations [Limkin2019jt].


[image: _images/MorphMesh.png]

Fig. 9 Meshing algorithms draw faces and vertices to cover the ROI. One
face, spanned by vertices \(\mathbf{a}\), \(\mathbf{b}\) and
\(\mathbf{c}\), is highlighted. Moreover, the vertices define the
three edges \(\mathbf{ab}=\mathbf{b}-\mathbf{a}\),
\(\mathbf{bc}=\mathbf{c}-\mathbf{b}\) and
\(\mathbf{ca}=\mathbf{a}-\mathbf{c}\). The face normal
\(\mathbf{n}\) is determined using the right-hand rule, and
calculated as
\(\mathbf{n}=\left(\mathbf{ab} \times \mathbf{bc}\right) / \| \mathbf{ab} \times \mathbf{bc}\|\),
i.e. the outer product of edge \(\mathbf{ab}\) with edge
\(\mathbf{bc}\), normalised by its length.



Meshing algorithms use the ROI voxel point set \(\mathbf{X}_{c}\) to
create a closed mesh. Dependent on the algorithm, a parameter is
required to specify where the mesh should be drawn. A default level of
0.5 times the voxel spacing is used for marching cube algorithms. Other
algorithms require a so-called isovalue, for which a value of 0.5 can
be used since the ROI mask consists of \(0\) and \(1\) values,
and we want to roughly draw the mesh half-way between voxel centers.
Depending on implementation, algorithms may also require padding of the
ROI mask with non-ROI (\(0\)) voxels to correctly estimate the mesh
in places where ROI voxels would otherwise be located at the edge of the
mask.

The closed mesh drawn by the meshing algorithm consists of
\(N_{fc}\) triangle faces spanned by \(N_{vx}\) vertex points.
An example triangle face is drawn in Fig. 9. The set of
vertex points is then \(\mathbf{X}_{vx}\).

The calculation of the mesh volume requires that all faces have the same
orientation of the face normal. Consistent orientation can be checked by
the fact that in a regular, closed mesh, all edges are shared between
exactly two faces. Given the edge spanned by vertices \(\mathbf{a}\)
and \(\mathbf{b}\), the edge must be
\(\mathbf{ab}=\mathbf{b}-\mathbf{a}\) for one face and
\(\mathbf{ba}=\mathbf{a}-\mathbf{b}\) for the adjacent face. This
ensures consistent application of the right-hand rule, and thus
consistent orientation of the face normals. Algorithm implementations
may return consistently orientated faces by default.



ROI morphological and intensity masks

The ROI consists of a morphological and an intensity mask. The
morphological mask is used to calculate many of the morphological
features and to generate the voxel point set \(\mathbf{X}_{c}\). Any
holes within the morphological mask are understood to be the result of
segmentation decisions, and thus to be intentional. The intensity mask
is used to generate the voxel intensity set \(\mathbf{X}_{gl}\) with
corresponding point set \(\mathbf{X}_{c,gl}\).



Aggregating features

By definition, morphological features are calculated in 3D (DHQ4), and
not per slice.



Units of measurement

By definition, morphological features are computed using the unit of
length as defined in the DICOM standard, i.e. millimeter for most
medical imaging modalities.

If the unit of length is not defined by a standard, but is explicitly
defined as meta data, this definition should be used. In this case, care
should be taken that this definition is consistent across all data in
the cohort.

If a feature value should be expressed as a different unit of length,
e.g. cm instead of mm, such conversions should take place after
computing the value using the standard units.


Volume (mesh)

RNU0
The mesh-based volume \(V\) is calculated from the ROI mesh as
follows [Zhang2001]. A tetrahedron is formed by each
face \(k\) and the origin. By placing the origin vertex of each
tetrahedron at \((0,0,0)\), the signed volume of the tetrahedron is:


\[V_k = \frac{\mathbf{a}\cdot\left(\mathbf{b}\times\mathbf{c}\right)}{6}\]

Here \(\mathbf{a}\), \(\mathbf{b}\) and \(\mathbf{c}\) are
the vertex points of face \(k\). Depending on the orientation of the
normal, the signed volume may be positive or negative. Hence, the
orientation of face normals should be consistent, e.g. all normals must
be either pointing outward or inward. The volume \(V\) is then
calculated by summing over the face volumes, and taking the absolute
value:


\[F_{\mathit{morph.vol}} = V = \left|\sum_{k=1}^{N_{fc}}V_k\right|\]

In positron emission tomography, the volume of the ROI commonly
receives a name related to the radioactive tracer, e.g. metabolically
active tumour volume (MATV) for 18F-FDG.


Table 3 Reference values for the volume (mesh) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	556

	4

	very strong



	config. A

	\(3.58 \times 10^{5}\)

	\(5 \times 10^{3}\)

	very strong



	config. B

	\(3.58 \times 10^{5}\)

	\(5 \times 10^{3}\)

	strong



	config. C

	\(3.67 \times 10^{5}\)

	\(6 \times 10^{3}\)

	strong



	config. D

	\(3.67 \times 10^{5}\)

	\(6 \times 10^{3}\)

	strong



	config. E

	\(3.67 \times 10^{5}\)

	\(6 \times 10^{3}\)

	strong








Volume (voxel counting)

YEKZ
In clinical practice, volumes are commonly determined by counting
voxels. For volumes consisting of a large number of voxels (1000s), the
differences between voxel counting and mesh-based approaches are
usually negligible. However for volumes with a low number of voxels (10s
to 100s), voxel counting will overestimate volume compared to the
mesh-based approach. It is therefore only used as a reference feature,
and not in the calculation of other morphological features.

Voxel counting volume is defined as:


\[F_{\mathit{morph.approx.vol}} = \sum_{k=1}^{N_v} V_k\]

Here \(N_v\) is the number of voxels in the morphological mask of
the ROI, and \(V_k\) the volume of voxel \(k\).


Table 4 Reference values for the volume (voxel counting) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	592

	4

	very strong



	config. A

	\(3.59 \times 10^{5}\)

	\(5 \times 10^{3}\)

	strong



	config. B

	\(3.58 \times 10^{5}\)

	\(5 \times 10^{3}\)

	strong



	config. C

	\(3.68 \times 10^{5}\)

	\(6 \times 10^{3}\)

	strong



	config. D

	\(3.68 \times 10^{5}\)

	\(6 \times 10^{3}\)

	strong



	config. E

	\(3.68 \times 10^{5}\)

	\(6 \times 10^{3}\)

	strong








Surface area (mesh)

C0JK
The surface area \(A\) is also calculated from the ROI mesh by
summing over the triangular face surface areas
[Aerts2014]. By definition, the area of face
\(k\) is:


\[A_k = \frac{|\mathbf{ab} \times \mathbf{ac}|}{2}\]

As in Fig. 9, edge
\(\mathbf{ab}=\mathbf{b}-\mathbf{a}\) is the vector from vertex
\(\mathbf{a}\) to vertex \(\mathbf{b}\), and edge
\(\mathbf{ac}=\mathbf{c}-\mathbf{a}\) the vector from vertex
\(\mathbf{a}\) to vertex \(\mathbf{c}\). The total surface
area \(A\) is then:


\[F_{\mathit{morph.area}} = A = \sum_{k=1}^{N_{fc}} A_k\]


Table 5 Reference values for the surface area (mesh) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	388

	3

	very strong



	config. A

	\(3.57 \times 10^{4}\)

	300

	strong



	config. B

	\(3.37 \times 10^{4}\)

	300

	strong



	config. C

	\(3.43 \times 10^{4}\)

	400

	strong



	config. D

	\(3.43 \times 10^{4}\)

	400

	strong



	config. E

	\(3.43 \times 10^{4}\)

	400

	strong








Surface to volume ratio

2PR5
The surface to volume ratio is given as
[Aerts2014]:


\[F_{\mathit{morph.av}} = \frac{A}{V}\]

Note that this feature is not dimensionless.


Table 6 Reference values for the surface to volume ratio feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.698

	0.004

	very strong



	config. A

	0.0996

	0.0005

	strong



	config. B

	0.0944

	0.0005

	strong



	config. C

	0.0934

	0.0007

	strong



	config. D

	0.0934

	0.0007

	strong



	config. E

	0.0934

	0.0007

	strong








Compactness 1

SKGS
Several features (compactness 1 and 2, spherical disproportion,
sphericity and asphericity) quantify the deviation of the ROI volume
from a representative spheroid. All these definitions can be derived
from one another. As a results these features are are highly correlated
and may thus be redundant. Compactness 1
[Aerts2014] is a measure for how compact, or
sphere-like the volume is. It is defined as:


\[F_{\mathit{morph.comp.1}} = \frac{V}{\pi^{1/2} A^{3/2}}\]

Compactness 1 is sometimes [Aerts2014] defined
using \(A^{2/3}\) instead of \(A^{3/2}\), but this does not lead
to a dimensionless quantity.


Table 7 Reference values for the compactness 1 feature. An unset value (—) indicates the lack of a reference value.







	data

	value

	tol.

	consensus





	dig. phantom

	0.0411

	0.0003

	strong



	config. A

	0.03

	0.0001

	strong



	config. B

	0.0326

	0.0001

	strong



	config. C

	—

	—

	moderate



	config. D

	0.0326

	0.0002

	strong



	config. E

	0.0326

	0.0002

	strong








Compactness 2

BQWJ
Like Compactness 1, Compactness 2 [Aerts2014]
quantifies how sphere-like the volume is:


\[F_{\mathit{morph.comp.2}} = 36\pi\frac{V^2}{A^3}\]

By definition
\(F_{\mathit{morph.comp.1}} = 1/6\pi \left(F_{\mathit{morph.comp.2}}\right)^{1/2}\).


Table 8 Reference values for the compactness 2 feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.599

	0.004

	strong



	config. A

	0.319

	0.001

	strong



	config. B

	0.377

	0.001

	strong



	config. C

	0.378

	0.004

	strong



	config. D

	0.378

	0.004

	strong



	config. E

	0.378

	0.004

	strong








Spherical disproportion

KRCK
Spherical disproportion [Aerts2014] likewise
describes how sphere-like the volume is:


\[F_{\mathit{morph.sph.dispr}} = \frac{A}{4\pi R^2} = \frac{A}{\left(36\pi V^2\right)^{1/3}}\]

By definition
\(F_{\mathit{morph.sph.dispr}} = \left(F_{\mathit{morph.comp.2}}\right)^{-1/3}\).


Table 9 Reference values for the spherical disproportion feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.19

	0.01

	strong



	config. A

	1.46

	0.01

	strong



	config. B

	1.38

	0.01

	strong



	config. C

	1.38

	0.01

	strong



	config. D

	1.38

	0.01

	strong



	config. E

	1.38

	0.01

	strong








Sphericity

QCFX
Sphericity [Aerts2014] is a further measure to
describe how sphere-like the volume is:


\[F_{\mathit{morph.sphericity}} = \frac{\left(36\pi V^2\right)^{1/3}}{A}\]

By definition
\(F_{\mathit{morph.sphericity}} = \left(F_{\mathit{morph.comp.2}}\right)^{1/3}\).


Table 10 Reference values for the sphericity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.843

	0.005

	very strong



	config. A

	0.683

	0.001

	strong



	config. B

	0.722

	0.001

	strong



	config. C

	0.723

	0.003

	strong



	config. D

	0.723

	0.003

	strong



	config. E

	0.723

	0.003

	strong








Asphericity

25C7
Asphericity [Apostolova2014] also describes how
much the ROI deviates from a perfect sphere, with perfectly spherical
volumes having an asphericity of 0. Asphericity is defined as:


\[F_{\mathit{morph.asphericity}}=\left(\frac{1}{36\pi}\frac{A^3}{V^2}\right)^{1/3}-1\]

By definition
\(F_{\mathit{morph.asphericity}} = \left(F_{\mathit{morph.comp.2}}\right)^{-1/3}-1\)


Table 11 Reference values for the asphericity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.186

	0.001

	strong



	config. A

	0.463

	0.002

	strong



	config. B

	0.385

	0.001

	moderate



	config. C

	0.383

	0.004

	strong



	config. D

	0.383

	0.004

	strong



	config. E

	0.383

	0.004

	strong








Centre of mass shift

KLMA
The distance between the ROI volume centroid and the intensity-weighted
ROI volume is an abstraction of the spatial distribution of low/high
intensity regions within the ROI. Let \(N_{v,m}\) be the number of
voxels in the morphological mask. The ROI volume centre of mass is
calculated from the morphological voxel point set \(\mathbf{X}_{c}\)
as follows:


\[\overrightarrow{CoM}_{geom} = \frac{1}{N_{v,m}}\sum_{k=1}^{N_{v,m}} \vec{X}_{c,k}\]

The intensity-weighted ROI volume is based on the intensity mask. The
position of each voxel centre in the intensity mask voxel set
\(\mathbf{X}_{c,gl}\) is weighted by its corresponding intensity
\(\mathbf{X}_{gl}\). Therefore, with \(N_{v,gl}\) the number of
voxels in the intensity mask:


\[\overrightarrow{CoM}_{gl} =\frac{\sum_{k=1}^{N_{v,gl}} X_{gl,k}\vec{X}_{c,gl,k}}{\sum_{k=1}^{N_{v,gl}} X_{gl,k}}\]

The distance between the two centres of mass is then:


\[F_{\mathit{morph.com}} = ||\overrightarrow{CoM}_{geom}-\overrightarrow{CoM}_{gl}||_2\]


Table 12 Reference values for the centre of mass shift feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.672

	0.004

	very strong



	config. A

	52.9

	28.7

	strong



	config. B

	63.1

	29.6

	strong



	config. C

	45.6

	2.8

	strong



	config. D

	64.9

	2.8

	strong



	config. E

	68.5

	2.1

	moderate








Maximum 3D diameter

L0JK
The maximum 3D diameter [Aerts2014] is the distance
between the two most distant vertices in the ROI mesh vertex set
\(\mathbf{X}_{vx}\):


\[F_{\mathit{morph.diam}} = \text{max}\left( ||\vec{X}_{vx,k_{1}}-\vec{X}_{vx,k_{2}}||_2\right),\qquad k_{1}=1,\ldots,N\qquad k_{2}=1,\ldots,N\]

A practical way of determining the maximum 3D diameter is to first
construct the convex hull of the ROI mesh. The convex hull vertex set
\(\mathbf{X}_{vx,convex}\) is guaranteed to contain the two most
distant vertices of \(\mathbf{X}_{vx}\). This significantly reduces
the computational cost of calculating distances between all vertices.
Despite the remaining \(O(n^2)\) cost of calculating distances
between different vertices, \(\mathbf{X}_{vx,convex}\) is usually
considerably smaller in size than \(\mathbf{X}_{vx}\). Moreover, the
convex hull is later used for the calculation of other morphological
features
(Volume density (convex hull) - Area density (convex hull)).


Table 13 Reference values for the maximum 3D diameter feature.







	data

	value

	tol.

	consensus





	dig. phantom

	13.1

	0.1

	strong



	config. A

	125

	1

	strong



	config. B

	125

	1

	strong



	config. C

	125

	1

	strong



	config. D

	125

	1

	strong



	config. E

	125

	1

	strong








Major axis length

TDIC
Principal component analysis (PCA) can be used to determine the main
orientation of the ROI [Solomon2011]. On a three
dimensional object, PCA yields three orthogonal eigenvectors
\(\left\lbrace e_1,e_2,e_3\right\rbrace\) and three eigenvalues
\(\left( \lambda_1, \lambda_2, \lambda_3\right)\). These eigenvalues
and eigenvectors geometrically describe a triaxial ellipsoid. The three
eigenvectors determine the orientation of the ellipsoid, whereas the
eigenvalues provide a measure of how far the ellipsoid extends along
each eigenvector. Several features make use of principal component
analysis, namely major, minor and least axis length, elongation,
flatness, and approximate enclosing ellipsoid volume and area
density.

The eigenvalues can be ordered so that
\(\lambda_{\mathit{major}} \geq \lambda_{\mathit{minor}}\geq \lambda_{\mathit{least}}\)
correspond to the major, minor and least axes of the ellipsoid
respectively. The semi-axes lengths \(a\), \(b\) and \(c\)
for the major, minor and least axes are then
\(2\sqrt{\lambda_{\mathit{major}}}\),
\(2\sqrt{\lambda_{\mathit{minor}}}\) and
\(2\sqrt{\lambda_{\mathit{least}}}\) respectively. The major axis
length is twice the semi-axis length \(a\), determined using the
largest eigenvalue obtained by PCA on the point set of voxel centers
\(\mathbf{X}_{c}\) [Heiberger2015]:


\[F_{\mathit{morph.pca.major}} = 2a = 4\sqrt{\lambda_{\mathit{major}}}\]


Table 14 Reference values for the major axis length feature.







	data

	value

	tol.

	consensus





	dig. phantom

	11.4

	0.1

	very strong



	config. A

	92.7

	0.4

	very strong



	config. B

	92.6

	0.4

	strong



	config. C

	93.3

	0.5

	strong



	config. D

	93.3

	0.5

	strong



	config. E

	93.3

	0.5

	strong








Minor axis length

P9VJ
The minor axis length of the ROI provides a measure of how far the
volume extends along the second largest axis. The minor axis length is
twice the semi-axis length \(b\), determined using the second
largest eigenvalue obtained by PCA, as described in Section
Major axis length.


\[F_{\mathit{morph.pca.minor}}= 2b =4\sqrt{\lambda_{\mathit{minor}}}\]


Table 15 Reference values for the minor axis length feature.







	data

	value

	tol.

	consensus





	dig. phantom

	9.31

	0.06

	very strong



	config. A

	81.5

	0.4

	very strong



	config. B

	81.3

	0.4

	strong



	config. C

	82

	0.5

	strong



	config. D

	82

	0.5

	strong



	config. E

	82

	0.5

	strong








Least axis length

7J51
The least axis is the axis along which the object is least extended. The
least axis length is twice the semi-axis length \(c\), determined
using the smallest eigenvalue obtained by PCA, as described in Section
Major axis length.


\[F_{\mathit{morph.pca.least}}= 2c =4\sqrt{\lambda_{\mathit{least}}}\]


Table 16 Reference values for the least axis length feature.







	data

	value

	tol.

	consensus





	dig. phantom

	8.54

	0.05

	very strong



	config. A

	70.1

	0.3

	strong



	config. B

	70.2

	0.3

	strong



	config. C

	70.9

	0.4

	strong



	config. D

	70.9

	0.4

	strong



	config. E

	70.9

	0.4

	strong








Elongation

Q3CK
The ratio of the major and minor principal axis lengths could be viewed
as the extent to which a volume is longer than it is wide, i.e. is
eccentric. For computational reasons, we express elongation as an
inverse ratio. 1 is thus completely non-elongated, e.g. a sphere, and
smaller values express greater elongation of the ROI volume.


\[F_{\mathit{morph.pca.elongation}} =\sqrt{\frac{\lambda_{minor}}{\lambda_{major}}}\]


Table 17 Reference values for the elongation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.816

	0.005

	very strong



	config. A

	0.879

	0.001

	strong



	config. B

	0.878

	0.001

	strong



	config. C

	0.879

	0.001

	strong



	config. D

	0.879

	0.001

	strong



	config. E

	0.879

	0.001

	strong








Flatness

N17B
The ratio of the major and least axis lengths could be viewed as the
extent to which a volume is flat relative to its length. For
computational reasons, we express flatness as an inverse ratio. 1 is
thus completely non-flat, e.g. a sphere, and smaller values express
objects which are increasingly flatter.


\[F_{\mathit{morph.pca.flatness}} = \sqrt{\frac{\lambda_{least}}{\lambda_{major}}}\]


Table 18 Reference values for the flatness feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.749

	0.005

	very strong



	config. A

	0.756

	0.001

	strong



	config. B

	0.758

	0.001

	strong



	config. C

	0.76

	0.001

	strong



	config. D

	0.76

	0.001

	strong



	config. E

	0.76

	0.001

	strong








Volume density (axis-aligned bounding box)

PBX1
Volume density is the fraction of the ROI volume and a comparison
volume. Here the comparison volume is that of the axis-aligned bounding
box (AABB) of the ROI mesh vertex set \(\mathbf{X}_{vx}\) or the ROI
mesh convex hull vertex set \(\mathbf{X}_{vx,convex}\). Both vertex
sets generate an identical bounding box, which is the smallest box
enclosing the vertex set, and aligned with the axes of the reference
frame.


\[F_{\mathit{morph.v.dens.aabb}} = \frac{V}{V_{\mathit{aabb}}}\]

This feature is also called extent
[ElNaqa2009][Solomon2011].


Table 19 Reference values for the volume density (AABB) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.869

	0.005

	strong



	config. A

	0.486

	0.003

	strong



	config. B

	0.477

	0.003

	strong



	config. C

	0.478

	0.003

	strong



	config. D

	0.478

	0.003

	strong



	config. E

	0.478

	0.003

	strong








Area density (axis-aligned bounding box)

R59B
Conceptually similar to the volume density (AABB) feature, area
density considers the ratio of the ROI surface area and the surface
area \(A_{aabb}\) of the axis-aligned bounding box enclosing the ROI
mesh vertex set \(\mathbf{X}_{vx}\)
[VanDijk2016]. The bounding box is identical to the
one used for computing the volume density (AABB) feature. Thus:


\[F_{\mathit{morph.a.dens.aabb}} = \frac{A}{A_{aabb}}\]


Table 20 Reference values for the area density (AABB) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.866

	0.005

	strong



	config. A

	0.725

	0.003

	strong



	config. B

	0.678

	0.003

	strong



	config. C

	0.678

	0.003

	strong



	config. D

	0.678

	0.003

	strong



	config. E

	0.678

	0.003

	strong








Volume density (oriented minimum bounding box)

ZH1A
Note: This feature currently has no reference values and should not
be used.

The volume of an axis-aligned bounding box is generally not the smallest
obtainable volume enclosing the ROI. By orienting the box along a
different set of axes, a smaller enclosing volume may be attainable. The
oriented minimum bounding box (OMBB) of the ROI mesh vertex set
\(\mathbf{X}_{vx}\) or \(\mathbf{X}_{vx,convex}\) encloses the
vertex set and has the smallest possible volume. A 3D rotating callipers
technique was devised by [ORourke1985] to derive the
oriented minimum bounding box. Due to computational complexity of this
technique, the oriented minimum bounding box is commonly approximated at
lower complexity, see e.g. [Barequet2001] and
[Chan2001]. Thus:


\[F_{\mathit{morph.v.dens.ombb}} = \frac{V}{V_{ombb}}\]

Here \(V_{ombb}\) is the volume of the oriented minimum bounding
box.



Area density (oriented minimum bounding box)

IQYR
Note: This feature currently has no reference values and should not
be used.

The area density (OMBB) is estimated as:


\[F_{\mathit{morph.a.dens.ombb}} = \frac{A}{A_{ombb}}\]

Here \(A_{ombb}\) is the surface area of the same bounding box as
calculated for the volume density (OMBB) feature.



Volume density (approximate enclosing ellipsoid)

6BDE
The eigenvectors and eigenvalues from PCA of the ROI voxel center point
set \(\mathbf{X}_{c}\) can be used to describe an ellipsoid
approximating the point cloud [Mazurowski2016], i.e.
the approximate enclosing ellipsoid (AEE). The volume of this ellipsoid
is \(V_{\mathit{aee}}=4 \pi\,a\,b\,c /3\), with \(a\),
\(b\), and \(c\) being the lengths of the ellipsoid’s
semi-principal axes, see Section Major axis length. The
volume density (AEE) is then:


\[F_{\mathit{morph.v.dens.aee}} = \frac{3V}{4\pi abc}\]


Table 21 Reference values for the volume density (AEE) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.17

	0.01

	moderate



	config. A

	1.29

	0.01

	strong



	config. B

	1.29

	0.01

	strong



	config. C

	1.29

	0.01

	moderate



	config. D

	1.29

	0.01

	moderate



	config. E

	1.29

	0.01

	strong








Area density (approximate enclosing ellipsoid)

RDD2
The surface area of an ellipsoid can generally not be evaluated in an
elementary form. However, it is possible to approximate the surface
using an infinite series. We use the same semi-principal axes as for the
volume density (AEE) feature and define:


\[A_{\mathit{aee}}\left(a,b,c\right)=4\pi\,a\,b\sum_{\nu=0}^{\infty}\frac{\left(\alpha\,\beta\right)^{\nu}}{1-4\nu^2}P_{\nu}\left(\frac{\alpha^2+\beta^2}{2\alpha\beta}\right)\]

Here \(\alpha=\sqrt{1-b^2/a^2}\) and \(\beta=\sqrt{1-c^2/a^2}\)
are eccentricities of the ellipsoid and \(P_{\nu}\) is the Legendre
polynomial function for degree \(\nu\). The Legendre polynomial
series, though infinite, converges, and approximation may be stopped
early when the incremental gains in precision become limited. By
default, we stop the series after \(\nu=20\).

The area density (AEE) is then approximated as:


\[F_{\mathit{morph.a.dens.aee}} = \frac{A}{A_{\mathit{aee}}}\]


Table 22 Reference values for the area density (AEE) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.36

	0.01

	moderate



	config. A

	1.71

	0.01

	moderate



	config. B

	1.62

	0.01

	moderate



	config. C

	1.62

	0.01

	moderate



	config. D

	1.62

	0.01

	moderate



	config. E

	1.62

	0.01

	strong








Volume density (minimum volume enclosing ellipsoid)

SWZ1
Note: This feature currently has no reference values and should not
be used.

The minimum volume enclosing ellipsoid (MVEE), unlike the approximate
enclosing ellipsoid, is the smallest ellipsoid that encloses the ROI.
Direct computation of the MVEE is usually unfeasible, and is therefore
approximated. Various approximation algorithms have been described, e.g.
[Todd2007][Ahipasaoglu2015], which are usually
elaborations on Khachiyan’s barycentric coordinate descent method
[Khachiyan1996].

The MVEE encloses the ROI mesh vertex set \(\mathbf{X}_{vx}\), and
by definition \(\mathbf{X}_{vx,convex}\) as well. Use of the convex
mesh set \(\mathbf{X}_{vx,convex}\) is recommended due to its
sparsity compared to the full vertex set. The volume of the MVEE is
defined by its semi-axes lengths
\(V_{\mathit{mvee}}=4 \pi\,a\,b\,c /3\). Then:


\[F_{\mathit{morph.v.dens.mvee}} = \frac{V}{V_{\mathit{mvee}}}\]

For Khachiyan’s barycentric coordinate descent-based methods we use a
default tolerance \(\tau=0.001\) as stopping criterion.



Area density (minimum volume enclosing ellipsoid)

BRI8
Note: This feature currently has no reference values and should not
be used.

The surface area of an ellipsoid does not have a general elementary
form, but should be approximated as noted in Section
Area density (approximate enclosing ellipsoid). Let the approximated surface
area of the MVEE be \(A_{\mathit{mvee}}\). Then:


\[F_{\mathit{morph.a.dens.mvee}} = \frac{A}{A_{\mathit{mvee}}}\]



Volume density (convex hull)

R3ER
The convex hull encloses ROI mesh vertex set \(\mathbf{X}_{vx}\) and
consists of the vertex set \(\mathbf{X}_{vx,convex}\) and
corresponding faces, see section Maximum 3D diameter.
The volume of the ROI mesh convex hull set \(V_{convex}\) is
computed in the same way as that of the volume (mesh) feature
(Volume (mesh)). The volume density can then be
calculated as follows:


\[F_{\mathit{morph.v.dens.conv.hull}} = \frac{V}{V_{convex}}\]

This feature is also called solidity
[ElNaqa2009][Solomon2011].


Table 23 Reference values for the volume density (convex hull) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.961

	0.006

	strong



	config. A

	0.827

	0.001

	moderate



	config. B

	0.829

	0.001

	moderate



	config. C

	0.834

	0.002

	moderate



	config. D

	0.834

	0.002

	moderate



	config. E

	0.834

	0.002

	moderate








Area density (convex hull)

7T7F
The area of the convex hull \(A_{convex}\) is the sum of the areas
of the faces of the convex hull, and is computed in the same way as the
surface area (mesh) feature (Surface area (mesh) section).
The convex hull is identical to the one used in the volume density
(convex hull) feature. Then:


\[F_{\mathit{morph.a.dens.conv.hull}} = \frac{A}{A_{convex}}\]


Table 24 Reference values for the area density (convex hull) feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.03

	0.01

	strong



	config. A

	1.18

	0.01

	moderate



	config. B

	1.12

	0.01

	moderate



	config. C

	1.13

	0.01

	moderate



	config. D

	1.13

	0.01

	moderate



	config. E

	1.13

	0.01

	moderate








Integrated intensity

99N0
Integrated intensity is the average intensity in the ROI, multiplied
by the volume. In the context of 18F-FDG-PET, this feature is
often called total lesion glycolysis [Vaidya2012].
Thus:


\[F_{\mathit{morph.integ.int}}=V\;\frac{1}{N_{v,gl}}\sum_{k=1}^{N_{v,gl}} X_{gl,k}\]

\(N_{v,gl}\) is the number of voxels in the ROI intensity mask.


Table 25 Reference values for the integrated intensity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	\(1.2 \times 10^{3}\)

	10

	moderate



	config. A

	\(4.81 \times 10^{6}\)

	\(3.2 \times 10^{5}\)

	strong



	config. B

	\(4.12 \times 10^{6}\)

	\(3.2 \times 10^{5}\)

	strong



	config. C

	\(-1.8 \times 10^{7}\)

	\(1.4 \times 10^{6}\)

	strong



	config. D

	\(-8.64 \times 10^{6}\)

	\(1.56 \times 10^{6}\)

	strong



	config. E

	\(-8.31 \times 10^{6}\)

	\(1.6 \times 10^{6}\)

	strong








Moran’s I index

N365
Moran’s I index is an indicator of spatial autocorrelation
[Moran1950][Dale2002]. It is defined as:


\[F_{\mathit{morph.moran.i}} = \frac{N_{v,gl}}{\sum_{k_{1}=1}^{N_{v,gl}} \sum_{k_{2}=1}^{N_{v,gl}}w_{k_{1}k_{2}}} \frac{\sum_{k_{1}=1}^{N_{v,gl}}\sum_{k_{2}=1}^{N_{v,gl}} w_{k_{1}k_{2}}\left(X_{gl,k_{1}}-\mu \right) \left( X_{gl,k_{2}}-\mu \right)} {\sum_{k=1}^{N_{v,gl}} \left(X_{gl,k}-\mu \right)^2},\qquad k_{1}\neq k_{2}\]

As before \(N_{v,gl}\) is the number of voxels in the ROI intensity
mask, \(\mu\) is the mean of \(\mathbf{X}_{gl}\) and
\(w_{k_{1}k_{2}}\) is a weight factor, equal to the inverse
Euclidean distance between voxels \(k_{1}\) and \(k_{2}\) of the
point set \(\mathbf{X}_{c,gl}\) of the ROI intensity mask
[DaSilva2008]. Values of Moran’s I close to 1.0,
0.0 and -1.0 indicate high spatial autocorrelation, no spatial
autocorrelation and high spatial anti-autocorrelation, respectively.

Note that for an ROI containing many voxels, calculating Moran’s I
index may be computationally expensive due to \(O(n^2)\) behaviour.
Approximation by repeated subsampling of the ROI may be required to make
the calculation tractable, at the cost of accuracy.


Table 26 Reference values for the Moran’s I index feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.0397

	0.0003

	strong



	config. A

	0.0322

	0.0002

	moderate



	config. B

	0.0329

	0.0001

	moderate



	config. C

	0.0824

	0.0003

	moderate



	config. D

	0.0622

	0.0013

	moderate



	config. E

	0.0596

	0.0014

	moderate








Geary’s C measure

NPT7
Geary’s C measure assesses spatial autocorrelation, similar to Moran’s
I index [Geary1954][Dale2002]. In contrast to
Moran’s I index, Geary’s C measure directly assesses intensity
differences between voxels and is more sensitive to local spatial
autocorrelation. This measure is defined as:


\[F_{\mathit{morph.geary.c}} = \frac{N_{v,gl}-1}{2\sum_{k_{1}=1}^{N_{v,gl}} \sum_{k_{2}=1}^{N_{v,gl}}w_{k_{1}k_{2}}} \frac{\sum_{k_{1}=1}^{N_{v,gl}}\sum_{k_{2}=1}^{N_{v,gl}} w_{k_{1}k_{2}}\left(X_{gl,k_{1}}-X_{gl,k_{2}} \right)^2} {\sum_{k=1}^{N_{v,gl}} \left(X_{gl,k}-\mu \right)^2},\qquad k_{1}\neq k_{2}\]

As with Moran’s I, \(N_{v,gl}\) is the number of voxels in the
ROI intensity mask, \(\mu\) is the mean of \(\mathbf{X}_{gl}\)
and \(w_{k_{1}k_{2}}\) is a weight factor, equal to the inverse
Euclidean distance between voxels \(k_{1}\) and \(k_{2}\) of the
ROI voxel point set \(\mathbf{X}_{c,gl}\)
[DaSilva2008].

Just as Moran’s I, Geary’s C measure exhibits \(O(n^2)\)
behaviour and an approximation scheme may be required to make
calculation feasible for large ROIs.


Table 27 Reference values for the Geary’s C measure feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.974

	0.006

	strong



	config. A

	0.863

	0.001

	moderate



	config. B

	0.862

	0.001

	moderate



	config. C

	0.846

	0.001

	moderate



	config. D

	0.851

	0.001

	moderate



	config. E

	0.853

	0.001

	moderate









Local intensity features

9ST6
Voxel intensities within a defined neighbourhood around a center voxel
are used to compute local intensity features. Unlike many other feature
sets, local features do not draw solely on intensities within the ROI.
While only voxels within the ROI intensity map can be used as a center
voxel, the local neighbourhood draws upon all voxels regardless of being
in an ROI.



Aggregating features

By definition, local intensity features are calculated in 3D (DHQ4),
and not per slice.


Local intensity peak

VJGA
The local intensity peak was originally devised for reducing variance
in determining standardised uptake values [Wahl2009].
It is defined as the mean intensity in a 1 cm3 spherical volume
(in world coordinates), which is centered on the voxel with the maximum
intensity level in the ROI intensity mask
[Frings2014].

To calculate \(F_{\mathit{loc.peak.local}}\), we first select all
the voxels with centers within a radius
\(r=\left(\frac{3}{4 \pi}\right)^{1/3} \approx 0.62\) cm of the
center of the maximum intensity voxel. Subsequently, the mean intensity
of the selected voxels, including the center voxel, are calculated.

In case the maximum intensity is found in multiple voxels within the
ROI, local intensity peak is calculated for each of these voxels, and
the highest local intensity peak is chosen.


Table 28 Reference values for the local intensity peak feature.







	data

	value

	tol.

	consensus





	dig. phantom

	2.6

	—

	strong



	config. A

	\(-\)277

	10

	moderate



	config. B

	178

	10

	moderate



	config. C

	169

	10

	moderate



	config. D

	201

	10

	strong



	config. E

	181

	13

	moderate








Global intensity peak

0F91
The global intensity peak feature \(F_{\mathit{loc.peak.global}}\)
is similar to the local intensity peak
[Frings2014]. However, instead of calculating the
mean intensity for the voxel(s) with the maximum intensity, the mean
intensity is calculated within a 1 cm3 neighbourhood for every
voxel in the ROI intensity mask. The highest intensity peak value is
then selected.

Calculation of the global intensity peak feature may be accelerated by
construction and application of an appropriate spatial spherical mean
convolution filter, due to the convolution theorem. In this case one
would first construct an empty 3D filter that will fit a 1 cm3
sphere. Within this context, the filter voxels may be represented by a
point set, akin to \(\mathbf{X}_{c}\) in
Morphological features. Euclidean distances in world spacing between
the central voxel of the filter and every remaining voxel are computed.
If this distance lies within radius
\(r=\left(\frac{3}{4 \pi}\right)^{1/3} \approx 0.62\) the
corresponding voxel receives a label \(1\), and \(0\) otherwise.
Subsequent summation of the voxel labels yields \(N_s\), the number
of voxels within the 1 cm3 sphere. The filter then becomes a
spherical mean filter by dividing the labels by \(N_s\).


Table 29 Reference values for the global intensity peak feature.







	data

	value

	tol.

	consensus





	dig. phantom

	3.1

	—

	strong



	config. A

	189

	5

	moderate



	config. B

	178

	5

	moderate



	config. C

	180

	5

	moderate



	config. D

	201

	5

	moderate



	config. E

	181

	5

	moderate









Intensity-based statistical features

UHIW
The intensity-based statistical features describe how intensities within
the region of interest (ROI) are distributed. The features in this set
do not require discretisation, and may be used to describe a continuous
intensity distribution. Intensity-based statistical features are not
meaningful if the intensity scale is arbitrary.

The set of intensities of the \(N_v\) voxels included in the ROI
intensity mask is denoted as
\(\mathbf{X}_{gl}=\left\lbrace X_{gl,1},X_{gl,2},\ldots,X_{gl,N_v}\right\rbrace\).



Aggregating features

We recommend calculating intensity-based statistical features using the
3D volume (DHQ4). An approach that computes intensity-based
statistical features per slice and subsequently averages them (3IDG)
is not recommended.


Mean intensity

Q4LE
The mean intensity of \(\mathbf{X}_{gl}\) is calculated as:


\[F_{\mathit{stat.mean}} = \frac{1}{N_v}\sum_{k=1}^{N_v} X_{gl,k}\]


Table 30 Reference values for the mean feature.







	data

	value

	tol.

	consensus





	dig. phantom

	2.15

	—

	very strong



	config. A

	13.4

	1.1

	very strong



	config. B

	11.5

	1.1

	strong



	config. C

	\(-\)49

	2.9

	very strong



	config. D

	\(-\)23.5

	3.9

	strong



	config. E

	\(-\)22.6

	4.1

	strong








Intensity variance

ECT3
The intensity variance of \(\mathbf{X}_{gl}\) is defined as:


\[F_{\mathit{stat.var}} = \frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{gl,k}-\mu \right)^2\]

Note that we do not apply a bias correction when computing the variance.


Table 31 Reference values for the variance feature.







	data

	value

	tol.

	consensus





	dig. phantom

	3.05

	—

	very strong



	config. A

	\(1.42 \times 10^{4}\)

	400

	very strong



	config. B

	\(1.44 \times 10^{4}\)

	400

	very strong



	config. C

	\(5.06 \times 10^{4}\)

	\(1.4 \times 10^{3}\)

	strong



	config. D

	\(3.28 \times 10^{4}\)

	\(2.1 \times 10^{3}\)

	strong



	config. E

	\(3.51 \times 10^{4}\)

	\(2.2 \times 10^{3}\)

	strong








Intensity skewness

KE2A
The skewness of the intensity distribution of \(\mathbf{X}_{gl}\)
is defined as:


\[F_{\mathit{stat.skew}} = \frac{\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{gl,k}-\mu \right) ^3}{\left(\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{gl,k}-\mu \right)^2\right)^{3/2}}\]

Here \(\mu=F_{\mathit{stat.mean}}\). If the intensity variance
\(F_{\mathit{stat.var}} = 0\), \(F_{\mathit{stat.skew}}=0\).


Table 32 Reference values for the skewness feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.08

	—

	very strong



	config. A

	\(-\)2.47

	0.05

	very strong



	config. B

	\(-\)2.49

	0.05

	very strong



	config. C

	\(-\)2.14

	0.05

	very strong



	config. D

	\(-\)2.28

	0.06

	strong



	config. E

	\(-\)2.3

	0.07

	strong








(Excess) intensity kurtosis

IPH6
Kurtosis, or technically excess kurtosis, is a measure of peakedness
in the intensity distribution \(\mathbf{X}_{gl}\):


\[F_{\mathit{stat.kurt}} = \frac{\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{gl,k}-\mu \right) ^4}{\left(\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{gl,k}-\mu \right)^2\right)^{2}} -3\]

Here \(\mu=F_{\mathit{stat.mean}}\). Note that kurtosis is
corrected by a Fisher correction of -3 to center it on 0 for normal
distributions. If the intensity variance
\(F_{\mathit{stat.var}} = 0\), \(F_{\mathit{stat.kurt}}=0\).


Table 33 Reference values for the (excess) kurtosis feature.







	data

	value

	tol.

	consensus





	dig. phantom

	\(-\)0.355

	—

	very strong



	config. A

	5.96

	0.24

	very strong



	config. B

	5.93

	0.24

	very strong



	config. C

	3.53

	0.23

	very strong



	config. D

	4.35

	0.32

	strong



	config. E

	4.44

	0.33

	strong








Median intensity

Y12H
The median intensity \(F_{\mathit{stat.median}}\) is the sample
median of \(\mathbf{X}_{gl}\).


Table 34 Reference values for the median feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	very strong



	config. A

	46

	0.3

	very strong



	config. B

	45

	0.3

	strong



	config. C

	40

	0.4

	strong



	config. D

	42

	0.4

	strong



	config. E

	43

	0.5

	strong








Minimum intensity

1GSF
The minimum intensity is equal to the lowest intensity present in
\(\mathbf{X}_{gl}\), i.e:


\[F_{\mathit{stat.min}} = \text{min}(\mathbf{X}_{gl})\]


Table 35 Reference values for the minimum feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	very strong



	config. A

	\(-\)500

	—

	very strong



	config. B

	\(-\)500

	—

	very strong



	config. C

	\(-\)939

	4

	strong



	config. D

	\(-\)724

	12

	strong



	config. E

	\(-\)743

	13

	strong








10th intensity percentile

QG58
\(P_{10}\) is the 10th percentile of
\(\mathbf{X}_{gl}\). \(P_{10}\) is a more robust alternative to
the minimum intensity.


Table 36 Reference values for the 10th percentile feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	very strong



	config. A

	\(-\)129

	8

	strong



	config. B

	\(-\)136

	8

	strong



	config. C

	\(-\)424

	14

	very strong



	config. D

	\(-\)304

	20

	strong



	config. E

	\(-\)310

	21

	strong








90th intensity percentile

8DWT
\(P_{90}\) is the 90th percentile of
\(\mathbf{X}_{gl}\). \(P_{90}\) is a more robust alternative to
the maximum intensity.


Table 37 Reference values for the 90th percentile feature.







	data

	value

	tol.

	consensus





	dig. phantom

	4

	—

	very strong



	config. A

	95

	—

	strong



	config. B

	91

	—

	strong



	config. C

	86

	0.1

	strong



	config. D

	86

	0.1

	strong



	config. E

	93

	0.2

	strong






Note that the 90:sup:`th` intensity percentile obtained for the digital
phantom may differ from the above reference value depending on the
software implementation used to compute it. For example, some
implementations were found to produce a value of 4.2 instead of 4.



Maximum intensity

84IY
The maximum intensity is equal to the highest intensity present in
\(\mathbf{X}_{gl}\), i.e:


\[F_{\mathit{stat.max}} = \text{max}(\mathbf{X}_{gl})\]


Table 38 Reference values for the maximum feature.







	data

	value

	tol.

	consensus





	dig. phantom

	6

	—

	very strong



	config. A

	377

	9

	very strong



	config. B

	391

	9

	strong



	config. C

	393

	10

	very strong



	config. D

	521

	22

	strong



	config. E

	345

	9

	strong








Intensity interquartile range

SALO
The interquartile range (IQR) of \(\mathbf{X}_{gl}\) is defined
as:


\[F_{\mathit{stat.iqr}} = P_{75}-P_{25}\]

\(P_{25}\) and \(P_{75}\) are the 25th and
75th percentiles of \(\mathbf{X}_{gl}\), respectively.


Table 39 Reference values for the interquartile range feature.







	data

	value

	tol.

	consensus





	dig. phantom

	3

	—

	very strong



	config. A

	56

	0.5

	very strong



	config. B

	52

	0.5

	strong



	config. C

	67

	4.9

	very strong



	config. D

	57

	4.1

	strong



	config. E

	62

	3.5

	strong








Intensity range

2OJQ
The intensity range is defined as:


\[F_{\mathit{stat.range}} = \text{max}(\mathbf{X}_{gl}) - \text{min}(\mathbf{X}_{gl})\]


Table 40 Reference values for the range feature.







	data

	value

	tol.

	consensus





	dig. phantom

	5

	—

	very strong



	config. A

	877

	9

	very strong



	config. B

	891

	9

	strong



	config. C

	\(1.33 \times 10^{3}\)

	20

	strong



	config. D

	\(1.24 \times 10^{3}\)

	40

	strong



	config. E

	\(1.09 \times 10^{3}\)

	30

	strong








Intensity-based mean absolute deviation

4FUA
Mean absolute deviation is a measure of dispersion from the mean of
\(\mathbf{X}_{gl}\):


\[F_{\mathit{stat.mad}} = \frac{1}{N_v}\sum_{k=1}^{N_v} \left|X_{gl,k}-\mu\right|\]

Here \(\mu=F_{\mathit{stat.mean}}\).


Table 41 Reference values for the mean absolute deviation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.55

	—

	very strong



	config. A

	73.6

	1.4

	very strong



	config. B

	74.4

	1.4

	strong



	config. C

	158

	4

	very strong



	config. D

	123

	6

	strong



	config. E

	125

	6

	strong








Intensity-based robust mean absolute deviation

1128
The intensity-based mean absolute deviation feature may be influenced
by outliers. To increase robustness, the set of intensities can be
restricted to those which lie closer to the center of the distribution.
Let


\[\mathbf{X}_{gl,10-90}= \left\lbrace x \in \mathbf{X}_{gl} | P_{10}\left(\mathbf{X}_{gl}\right)\leq x \leq P_{90}\left(\mathbf{X}_{gl}\right)\right\rbrace\]

Then \(\mathbf{X}_{gl,10-90}\) is the set of
\(N_{v,10-90}\leq N_v\) voxels in \(\mathbf{X}_{gl}\) whose
intensities fall in the interval bounded by the 10th and
90th percentiles of \(\mathbf{X}_{gl}\). The robust mean
absolute deviation is then:


\[F_{\mathit{stat.rmad}} = \frac{1}{N_{v,10-90}}\sum_{k=1}^{N_{v,10-90}} \left|X_{gl,10-90,k}-\overline{X}_{gl,10-90}\right|\]

\(\overline{X}_{gl,10-90}\) denotes the sample mean of
\(\mathbf{X_{gl,10-90}}\).


Table 42 Reference values for the robust mean absolute deviation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.11

	—

	very strong



	config. A

	27.7

	0.8

	very strong



	config. B

	27.3

	0.8

	strong



	config. C

	66.8

	3.5

	very strong



	config. D

	46.8

	3.6

	strong



	config. E

	46.5

	3.7

	strong








Intensity-based median absolute deviation

N72L
Median absolute deviation is similar in concept to the
intensity-based mean absolute deviation, but measures dispersion from
the median intensity instead of the mean intensity. Thus:


\[F_{\mathit{stat.medad}} = \frac{1}{N_v}\sum_{k=1}^{N_v} \left| X_{gl,k}-M\right|\]

Here, median \(M = F_{\mathit{stat.median}}\).


Table 43 Reference values for the median absolute deviation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.15

	—

	very strong



	config. A

	64.3

	1

	strong



	config. B

	63.8

	1

	strong



	config. C

	119

	4

	strong



	config. D

	94.7

	3.8

	strong



	config. E

	97.9

	3.9

	strong








Intensity-based coefficient of variation

7TET
The coefficient of variation measures the dispersion of
\(\mathbf{X}_{gl}\). It is defined as:


\[F_{\mathit{stat.cov}}=\frac{\sigma}{\mu}\]

Here \(\sigma={F_{\mathit{stat.var}}}^{1/2}\) and
\(\mu=F_{\mathit{stat.mean}}\) are the standard deviation and mean
of the intensity distribution, respectively.


Table 44 Reference values for the coefficient of variation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.812

	—

	very strong



	config. A

	8.9

	4.98

	strong



	config. B

	10.4

	5.2

	strong



	config. C

	\(-\)4.59

	0.29

	strong



	config. D

	\(-\)7.7

	1.01

	strong



	config. E

	\(-\)8.28

	0.95

	strong








Intensity-based quartile coefficient of dispersion

9S40
The quartile coefficient of dispersion is a more robust alternative to
the intensity-based coefficient of variance. It is defined as:


\[F_{\mathit{stat.qcod}} = \frac{P_{75}-P_{25}}{P_{75}+P_{25}}\]

\(P_{25}\) and \(P_{75}\) are the 25th and
75th percentile of \(\mathbf{X}_{gl}\), respectively.


Table 45 Reference values for the quartile coefficient of dispersion feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.6

	—

	very strong



	config. A

	0.636

	0.008

	strong



	config. B

	0.591

	0.008

	strong



	config. C

	1.03

	0.4

	strong



	config. D

	0.74

	0.011

	strong



	config. E

	0.795

	0.337

	strong








Intensity-based energy

N8CA
The energy [Aerts2014] of \(\mathbf{X}_{gl}\)
is defined as:


\[F_{\mathit{stat.energy}} = \sum_{k=1}^{N_v} X_{gl,k}^2\]


Table 46 Reference values for the energy feature.







	data

	value

	tol.

	consensus





	dig. phantom

	567

	—

	very strong



	config. A

	\(1.65 \times 10^{9}\)

	\(2 \times 10^{7}\)

	very strong



	config. B

	\(3.98 \times 10^{8}\)

	\(1.1 \times 10^{7}\)

	strong



	config. C

	\(2.44 \times 10^{9}\)

	\(1.2 \times 10^{8}\)

	strong



	config. D

	\(1.48 \times 10^{9}\)

	\(1.4 \times 10^{8}\)

	strong



	config. E

	\(1.58 \times 10^{9}\)

	\(1.4 \times 10^{8}\)

	strong








Root mean square intensity

5ZWQ
The root mean square intensity feature [Aerts2014],
which is also called the quadratic mean, of \(\mathbf{X}_{gl}\) is
defined as:


\[F_{\mathit{stat.rms}} = \sqrt{\frac{\sum_{k=1}^{N_v} X_{gl,k}^2}{N_v}}\]


Table 47 Reference values for the root mean square feature.







	data

	value

	tol.

	consensus





	dig. phantom

	2.77

	—

	very strong



	config. A

	120

	2

	very strong



	config. B

	121

	2

	strong



	config. C

	230

	4

	strong



	config. D

	183

	7

	strong



	config. E

	189

	7

	strong









Intensity histogram features

ZVCW
An intensity histogram is generated by discretising the original
intensity distribution \(\mathbf{X}_{gl}\) into intensity bins.
Approaches to discretisation are described in Section
Intensity discretisation.

Let
\(\mathbf{X}_{d}=\left\lbrace X_{d,1},X_{d,2},\ldots,X_{d,N_v}\right\rbrace\)
be the set of \(N_g\) discretised intensities of the \(N_v\)
voxels in the ROI intensity mask. Let
\(\mathbf{H}=\left\lbrace n_1, n_2,\ldots, n_{N_g}\right\rbrace\) be
the histogram with frequency count \(n_i\) of each discretised
intensity \(i\) in \(\mathbf{X}_{d}\). The occurrence
probability \(p_i\) for each discretised intensity \(i\) is then
approximated as \(p_i=n_i/N_v\).



Aggregating features

We recommend calculating intensity histogram features using the 3D
volume (DHQ4). An approach that computes features per slice and
subsequently averages (3IDG) is not recommended.


Mean discretised intensity

X6K6
The mean [Aerts2014] of \(\mathbf{X}_{d}\) is
calculated as:


\[F_{\mathit{ih.mean}} = \frac{1}{N_v}\sum_{k=1}^{N_v} X_{d,k}\]

An equivalent definition is:


\[F_{\mathit{ih.mean}} = \sum_{i=1}^{N_g}i\,p_i\]


Table 48 Reference values for the mean feature.







	data

	value

	tol.

	consensus





	dig. phantom

	2.15

	—

	very strong



	config. A

	21.1

	0.1

	strong



	config. B

	18.9

	0.3

	strong



	config. C

	38.6

	0.2

	strong



	config. D

	18.5

	0.5

	strong



	config. E

	21.7

	0.3

	strong








Discretised intensity variance

CH89
The variance [Aerts2014] of \(\mathbf{X}_{d}\)
is defined as:


\[F_{\mathit{ih.var}} = \frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{d,k}-\mu \right)^2\]

Here \(\mu=F_{\mathit{ih.mean}}\). This definition is equivalent
to:


\[F_{\mathit{ih.var}} = \sum_{i=1}^{N_g}\left(i-\mu\right)^2 p_i\]

Note that no bias-correction is applied when computing the variance.


Table 49 Reference values for the variance feature.







	data

	value

	tol.

	consensus





	dig. phantom

	3.05

	—

	strong



	config. A

	22.8

	0.6

	strong



	config. B

	18.7

	0.2

	strong



	config. C

	81.1

	2.1

	strong



	config. D

	21.7

	0.4

	strong



	config. E

	30.4

	0.8

	strong








Discretised intensity skewness

88K1
The skewness [Aerts2014] of \(\mathbf{X}_{d}\)
is defined as:


\[F_{\mathit{ih.skew}} = \frac{\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{d,k}-\mu \right) ^3}{\left(\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{d,k}-\mu \right)^2\right)^{3/2}}\]

Here \(\mu=F_{\mathit{ih.mean}}\). This definition is equivalent
to:


\[F_{\mathit{ih.skew}} = \frac{\sum_{i=1}^{N_g}\left(i-\mu\right)^3 p_i}{\left(\sum_{i=1}^{N_g}\left(i-\mu\right)^2 p_i\right)^{3/2}}\]

If the discretised intensity variance
\(F_{\mathit{ih.var}} = 0\), \(F_{\mathit{ih.skew}}=0\).


Table 50 Reference values for the skewness feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.08

	—

	very strong



	config. A

	\(-\)2.46

	0.05

	strong



	config. B

	\(-\)2.47

	0.05

	strong



	config. C

	\(-\)2.14

	0.05

	strong



	config. D

	\(-\)2.27

	0.06

	strong



	config. E

	\(-\)2.29

	0.07

	strong








(Excess) discretised intensity kurtosis

C3I7
Kurtosis [Aerts2014], or technically excess
kurtosis, measures the peakedness of the \(\mathbf{X}_{d}\)
distribution:


\[F_{\mathit{ih.kurt}} = \frac{\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{d,k}-\mu \right) ^4}{\left(\frac{1}{N_v}\sum_{k=1}^{N_v} \left( X_{d,k}-\mu \right)^2\right)^{2}} -3\]

Here \(\mu=F_{\mathit{ih.mean}}\). An alternative, but equivalent,
definition is:


\[F_{\mathit{ih.kurt}} = \frac{\sum_{i=1}^{N_g}\left(i-\mu\right)^4 p_i}{\left(\sum_{i=1}^{N_g}\left(i-\mu\right)^2 p_i\right)^{2}} -3\]

Note that kurtosis is corrected by a Fisher correction of -3 to center
kurtosis on 0 for normal distributions. If the discretised intensity
variance \(F_{\mathit{ih.var}} = 0\),
\(F_{\mathit{ih.kurt}}=0\).


Table 51 Reference values for the (excess) kurtosis feature.







	data

	value

	tol.

	consensus





	dig. phantom

	\(-\)0.355

	—

	very strong



	config. A

	5.9

	0.24

	strong



	config. B

	5.84

	0.24

	strong



	config. C

	3.52

	0.23

	strong



	config. D

	4.31

	0.32

	strong



	config. E

	4.4

	0.33

	strong








Median discretised intensity

WIFQ
The median \(F_{\mathit{ih.median}}\) is the sample median of
\(\mathbf{X}_{d}\) [Aerts2014].


Table 52 Reference values for the median feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	very strong



	config. A

	22

	—

	strong



	config. B

	20

	0.3

	strong



	config. C

	42

	—

	strong



	config. D

	20

	0.5

	strong



	config. E

	24

	0.2

	strong








Minimum discretised intensity

1PR8
The minimum discretised intensity [Aerts2014] is
equal to the lowest discretised intensity present in
\(\mathbf{X}_{d}\), i.e.:


\[F_{\mathit{ih.min}} = \text{min}(\mathbf{X}_{d})\]

For fixed bin number discretisation \(F_{\mathit{ih.min}}=1\) by
definition, but \(F_{\mathit{ih.min}}>1\) is possible for fixed bin
size discretisation.


Table 53 Reference values for the minimum feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	very strong



	config. A

	1

	—

	strong



	config. B

	1

	—

	strong



	config. C

	3

	0.16

	strong



	config. D

	1

	—

	strong



	config. E

	1

	—

	strong








10th discretised intensity percentile

1PR8
\(P_{10}\) is the 10th percentile of
\(\mathbf{X}_{d}\).


Table 54 Reference values for the 10th percentile feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	very strong



	config. A

	15

	0.4

	strong



	config. B

	14

	0.5

	strong



	config. C

	24

	0.7

	strong



	config. D

	11

	0.7

	strong



	config. E

	13

	0.7

	strong








90th discretised intensity percentile

GPMT
\(P_{90}\) is the 90th percentile of \(\mathbf{X}_{d}\)
and is defined as \(F_{\mathit{ih.P90}}\).


Table 55 Reference values for the 90th percentile feature.







	data

	value

	tol.

	consensus





	dig. phantom

	4

	—

	strong



	config. A

	24

	—

	strong



	config. B

	22

	0.3

	strong



	config. C

	44

	—

	strong



	config. D

	21

	0.5

	strong



	config. E

	25

	0.2

	strong






Note that the 90th discretised intensity percentile obtained for the
digital phantom may differ from the above reference value depending on
the software implementation used to compute it. For example, some
implementations were found to produce a value of 4.2 instead of 4 for
this feature.



Maximum discretised intensity

3NCY
The maximum discretised intensity [Aerts2014] is
equal to the highest discretised intensity present in
\(\mathbf{X}_{d}\), i.e.:


\[F_{\mathit{ih.max}} = \text{max}(\mathbf{X}_{d})\]

By definition, \(F_{\mathit{ih.max}}=N_g\).


Table 56 Reference values for the maximum feature.







	data

	value

	tol.

	consensus





	dig. phantom

	6

	—

	very strong



	config. A

	36

	0.4

	strong



	config. B

	32

	—

	strong



	config. C

	56

	0.5

	strong



	config. D

	32

	—

	strong



	config. E

	32

	—

	strong








Intensity histogram mode

AMMC
The mode of \(\mathbf{X}_{d}\) \(F_{\mathit{ih.mode}}\) is the
most common discretised intensity present, i.e. the value \(i\) for
with the highest count \(n_i\). The mode may not be uniquely
defined. When the highest count is found in multiple bins, the value
\(i\) of the bin closest to the mean discretised intensity is
chosen as intensity histogram mode. In pathological cases with two
such bins equidistant to the mean, the bin to the left of the mean is
selected.


Table 57 Reference values for the mode feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	very strong



	config. A

	23

	—

	strong



	config. B

	20

	0.3

	strong



	config. C

	43

	0.1

	strong



	config. D

	20

	0.4

	strong



	config. E

	24

	0.1

	strong








Discretised intensity interquartile range

WR0O
The interquartile range (IQR) of \(\mathbf{X}_{d}\) is defined as:


\[F_{\mathit{ih.iqr}} = P_{75}-P_{25}\]

\(P_{25}\) and \(P_{75}\) are the 25th and
75th percentile of \(\mathbf{X}_{d}\), respectively.


Table 58 Reference values for the interquartile range feature.







	data

	value

	tol.

	consensus





	dig. phantom

	3

	—

	very strong



	config. A

	2

	—

	strong



	config. B

	2

	—

	strong



	config. C

	3

	0.21

	strong



	config. D

	2

	0.06

	strong



	config. E

	1

	0.06

	strong








Discretised intensity range

5Z3W
The discretised intensity range [Aerts2014] is
defined as:


\[F_{\mathit{ih.range}} = \text{max}(\mathbf{X}_{d}) - \text{min}(\mathbf{X}_{d})\]

For fixed bin number discretisation, the discretised intensity
range equals \(N_g\) by definition.


Table 59 Reference values for the range feature.







	data

	value

	tol.

	consensus





	dig. phantom

	5

	—

	very strong



	config. A

	35

	0.4

	strong



	config. B

	31

	—

	strong



	config. C

	53

	0.6

	strong



	config. D

	31

	—

	strong



	config. E

	31

	—

	strong








Intensity histogram mean absolute deviation

D2ZX
The mean absolute deviation [Aerts2014] is a
measure of dispersion from the mean of \(\mathbf{X}_{d}\):


\[F_{\mathit{ih.mad}} = \frac{1}{N_v}\sum_{i=1}^{N_v} \left|X_{d,i}-\mu\right|\]

Here \(\mu=F_{\mathit{ih.mean}}\).


Table 60 Reference values for the mean absolute deviation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.55

	—

	very strong



	config. A

	2.94

	0.06

	strong



	config. B

	2.67

	0.03

	strong



	config. C

	6.32

	0.15

	strong



	config. D

	3.15

	0.05

	strong



	config. E

	3.69

	0.1

	strong








Intensity histogram robust mean absolute deviation

WRZB
Intensity histogram mean absolute deviation may be affected by
outliers. To increase robustness, the set of discretised intensities
under consideration can be restricted to those which are closer to the
center of the distribution. Let


\[\mathbf{X}_{d,10-90}= \left\lbrace x \in \mathbf{X}_{d} | P_{10}\left(\mathbf{X}_{d}\right)\leq x \leq P_{90}\left(\mathbf{X}_{d}\right)\right\rbrace\]

In short, \(\mathbf{X}_{d,10-90}\) is the set of
\(N_{v,10-90}\leq N_v\) voxels in \(\mathbf{X}_{d}\) whose
discretised intensities fall in the interval bounded by the
10th and 90th percentiles of \(\mathbf{X}_{d}\).
The robust mean absolute deviation is then:


\[F_{\mathit{ih.rmad}} = \frac{1}{N_{v,10-90}}\sum_{k=1}^{N_{v,10-90}} \left|X_{d,10-90,k}-\overline{X}_{d,10-90}\right|\]

\(\overline{X}_{d,10-90}\) denotes the sample mean of
\(\mathbf{X}_{d,10-90}\).


Table 61 Reference values for the robust mean absolute deviation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.11

	—

	very strong



	config. A

	1.18

	0.04

	strong



	config. B

	1.03

	0.03

	moderate



	config. C

	2.59

	0.14

	strong



	config. D

	1.33

	0.06

	strong



	config. E

	1.46

	0.09

	moderate








Intensity histogram median absolute deviation

4RNL
Histogram median absolute deviation is conceptually similar to
histogram mean absolute deviation, but measures dispersion from the
median instead of mean. Thus:


\[F_{\mathit{ih.medad}} = \frac{1}{N_v}\sum_{k=1}^{N_v} \left| X_{d,k}-M\right|\]

Here, median \(M = F_{\mathit{ih.median}}\).


Table 62 Reference values for the median absolute deviation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.15

	—

	very strong



	config. A

	2.58

	0.05

	strong



	config. B

	2.28

	0.02

	strong



	config. C

	4.75

	0.12

	strong



	config. D

	2.41

	0.04

	strong



	config. E

	2.89

	0.07

	strong








Intensity histogram coefficient of variation

CWYJ
The coefficient of variation measures the dispersion of the
discretised intensity distribution. It is defined as:


\[F_{\mathit{ih.cov}}=\frac{\sigma}{\mu}\]

Here \(\sigma={F_{\mathit{ih.var}}}^{1/2}\) and
\(\mu=F_{\mathit{ih.mean}}\) are the standard deviation and mean of
the discretised intensity distribution, respectively.


Table 63 Reference values for the coefficient of variation feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.812

	—

	very strong



	config. A

	0.227

	0.004

	strong



	config. B

	0.229

	0.004

	strong



	config. C

	0.234

	0.005

	strong



	config. D

	0.252

	0.006

	strong



	config. E

	0.254

	0.006

	strong








Intensity histogram quartile coefficient of dispersion

SLWD
The quartile coefficient of dispersion is a more robust alternative to
the intensity histogram coefficient of variance. It is defined as:


\[F_{\mathit{ih.qcod}} = \frac{P_{75}-P_{25}}{P_{75}+P_{25}}\]

\(P_{25}\) and \(P_{75}\) are the 25th and
75th percentile of \(\mathbf{X}_{d}\), respectively.


Table 64 Reference values for the quartile coefficient of dispersion feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.6

	—

	very strong



	config. A

	0.0455

	—

	strong



	config. B

	0.05

	0.0005

	strong



	config. C

	0.0361

	0.0027

	strong



	config. D

	0.05

	0.0021

	strong



	config. E

	0.0213

	0.0015

	strong








Discretised intensity entropy

TLU2
Entropy [Aerts2014] is an information-theoretic
concept that gives a metric for the information contained within
\(\mathbf{X}_{d}\). The particular metric used is Shannon entropy,
which is defined as:


\[F_{\mathit{ih.entropy}} = - \sum_{i=1}^{N_g} p_i \log_2 p_i\]

Note that entropy can only be meaningfully defined for discretised
intensities as it will tend to \(-\log_2 N_v\) for continuous
intensity distributions.


Table 65 Reference values for the entropy feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1.27

	—

	very strong



	config. A

	3.36

	0.03

	very strong



	config. B

	3.16

	0.01

	strong



	config. C

	3.73

	0.04

	strong



	config. D

	2.94

	0.01

	strong



	config. E

	3.22

	0.02

	strong








Discretised intensity uniformity

BJ5W
Uniformity [Aerts2014] of \(\mathbf{X}_{d}\) is
defined as:


\[F_{\mathit{ih.uniformity}} = \sum_{i=1}^{N_g} p_i^2\]

For histograms where most intensities are contained in a single bin,
uniformity approaches \(1\). The lower bound is \(1/N_{g}\).

Note that this feature is sometimes referred to as energy.


Table 66 Reference values for the uniformity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.512

	—

	very strong



	config. A

	0.15

	0.002

	very strong



	config. B

	0.174

	0.001

	strong



	config. C

	0.14

	0.003

	strong



	config. D

	0.229

	0.003

	strong



	config. E

	0.184

	0.001

	strong








Maximum histogram gradient

12CE
The histogram gradient \(\mathbf{H}'\) of intensity histogram
\(\mathbf{H}\) can be calculated as:


\[\begin{split}H'_i= \begin{cases}
n_2-n_1 & i=1\\
\left(n_{i+1}-n_{i-1}\right)/2 & 1<i<N_g\\
n_{N_g}-n_{N_g-1} & i=N_g\\
\end{cases}\end{split}\]

Histogram \(\mathbf{H}\) should be non-sparse, i.e. bins where
\(n_i=0\) should not be omitted. Ostensibly, the histogram gradient
can be calculated in different ways. The method above has the advantages
of being easy to implement and leading to a gradient \(\mathbf{H}'\)
with same size as \(\mathbf{H}\). This helps maintain a direct
correspondence between the discretised intensities in \(\mathbf{H}\)
and the bins of \(\mathbf{H}'\). The maximum histogram gradient
[VanDijk2016] is:


\[F_{\mathit{ih.max.grad}} = \text{max}\left(\mathbf{H}'\right)\]


Table 67 Reference values for the maximum histogram gradient feature.







	data

	value

	tol.

	consensus





	dig. phantom

	8

	—

	very strong



	config. A

	\(1.1 \times 10^{4}\)

	100

	strong



	config. B

	\(3.22 \times 10^{3}\)

	50

	strong



	config. C

	\(4.75 \times 10^{3}\)

	30

	strong



	config. D

	\(7.26 \times 10^{3}\)

	200

	strong



	config. E

	\(6.01 \times 10^{3}\)

	130

	strong








Maximum histogram gradient intensity

8E6O
The maximum histogram gradient intensity
[VanDijk2016] \(F_{\mathit{ih.max.grad.gl}}\) is
the discretised intensity corresponding to the maximum histogram
gradient, i.e. the value \(i\) in \(\mathbf{H}\) for which
\(\mathbf{H}'\) is maximal.


Table 68 Reference values for the maximum histogram gradient intensity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	3

	—

	strong



	config. A

	21

	—

	strong



	config. B

	19

	0.3

	strong



	config. C

	41

	—

	strong



	config. D

	19

	0.4

	strong



	config. E

	23

	0.2

	moderate








Minimum histogram gradient

VQB3
The minimum histogram gradient [VanDijk2016] is:


\[F_{\mathit{ih.min.grad}} = \text{min}\left(\mathbf{H}'\right)\]


Table 69 Reference values for the minimum histogram gradient feature.







	data

	value

	tol.

	consensus





	dig. phantom

	\(-\)50

	—

	very strong



	config. A

	\(-1.01 \times 10^{4}\)

	100

	strong



	config. B

	\(-3.02 \times 10^{3}\)

	50

	strong



	config. C

	\(-4.68 \times 10^{3}\)

	50

	strong



	config. D

	\(-6.67 \times 10^{3}\)

	230

	strong



	config. E

	\(-6.11 \times 10^{3}\)

	180

	strong








Minimum histogram gradient intensity

RHQZ
The minimum histogram gradient intensity
[VanDijk2016] \(F_{\mathit{ih.min.grad.gl}}\) is
the discretised intensity corresponding to the minimum histogram
gradient, i.e. the value \(i\) in \(\mathbf{H}\) for which
\(\mathbf{H}'\) is minimal.


Table 70 Reference values for the minimum histogram gradient intensity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	1

	—

	strong



	config. A

	24

	—

	strong



	config. B

	22

	0.3

	strong



	config. C

	44

	—

	strong



	config. D

	22

	0.4

	strong



	config. E

	25

	0.2

	strong









Intensity-volume histogram features

P88C
The (cumulative) intensity-volume histogram (IVH) of the set
\(\mathbf{X}_{gl}\) of voxel intensities in the ROI intensity mask
describes the relationship between discretised intensity \(i\) and
the fraction of the volume containing at least intensity \(i\),
\(\nu\) [ElNaqa2009].

Depending on the imaging modality, the calculation of IVH features
requires discretising \(\mathbf{X}_{gl}\) to generate a new voxel
set \(\mathbf{X}_{d,gl}\) with discretised intensities. Moreover,
the total range \(\mathbf{G}\) of discretised intensities and the
discretisation interval \(w_d\) should be provided or determined.
The total range \(\mathbf{G}\) determines the range of discretised
intensities to be included in the IVH, whereas the discretisation
interval determines the intensity difference between adjacent
discretised intensities in the IVH.

Recommendations for discretisation parameters differ depending on what
type of data the image represents, and how it is represented. These
recommendations are described below.



Discrete calibrated image intensities

Some imaging modalities by default generate voxels with calibrated,
discrete intensities – for example CT. In this case, the discretised ROI
voxel set \(\mathbf{X}_{d,gl}=\mathbf{X}_{gl}\), i.e. no
discretisation required. If a re-segmentation range is provided (see
Section Re-segmentation), the total range
\(\mathbf{G}\) is equal to the re-segmentation range. In the case of
a half-open re-segmentation range, the upper limit of the range is
\(\text{max}(\mathbf{X}_{gl})\). When no range is provided,
\(\mathbf{G}=[\text{min}(\mathbf{X}_{gl}),\text{max}(\mathbf{X}_{gl})]\).
The discretisation interval is \(w_d=1\).



Continuous calibrated image intensities

Imaging with calibrated, continuous intensities such as PET requires
discretisation to determine the IVH, while preserving the quantitative
intensity information. The use of a fixed bin size discretisation
method is thus recommended (see  Intensity discretisation). This
method requires a minimum intensity \(X_{gl,min}\), a maximum
intensity \(X_{gl,max}\) and the bin width \(w_b\). If a
re-segmentation range is defined (see Re-segmentation), \(X_{gl,min}\) is set to the lower
bound of the re-segmentation range and \(X_{gl,max}\) to the upper
bound; otherwise \(X_{gl,min} = \text{min}(\mathbf{X}_{gl})\) and
\(X_{gl,max} = \text{max}(\mathbf{X}_{gl})\) (i.e. the minimum and
maximum intensities in the imaging volume prior to discretisation). The
bin width \(w_b\) is modality dependent, but should be small
relative to the intensity range, e.g. 0.10 SUV for 18F-FDG-PET.

Next, fixed bin size discretisation produces the voxel set
\(\mathbf{X}_{d}\) of bin numbers, which needs to be converted to
bin centers in order to maintain a direct relationship with the original
intensities. We thus replace bin numbers \(\mathbf{X}_{d}\) with the
intensity corresponding to the bin center:


\[\mathbf{X}_{d,gl} = X_{gl,min} + \left(\mathbf{X}_{d}-0.5\right)w_b\]

The total range is then
\(\mathbf{G}=[X_{gl,min}+0.5w_b, X_{gl,max}-0.5w_b]\). In this case,
the discretisation interval matches the bin width, i.e. \(w_d=w_b\).



Arbitrary intensity units

Some imaging modalities, such as many MRI sequences, produce arbitrary
intensities. In such cases, a fixed bin number discretisation method
with \(N_g=1000\) bins is recommended (see
Intensity discretisation). The discretisation bin width is
\(w_b=\left(X_{gl,max}-X_{gl,min}\right)/N_g\), with
\(X_{gl,max}=\text{max}\left(\mathbf{X}_{gl}\right)\) and
\(X_{gl,min}=\text{min}\left(\mathbf{X}_{gl}\right)\), as
re-segmentation ranges generally cannot be provided for non-calibrated
intensities. The fixed bin number discretisation produces the voxel
set \(\mathbf{X}_{d} \in \{1,2,\ldots,N_g\}\). Because of the lack
of calibration, \(\mathbf{X}_{d,gl}=\mathbf{X}_{d}\), and
consequentially the discretisation interval is \(w_d=1\) and the
total range is \(\mathbf{G}=[1,N_g]\)



Calculating the IV histogram

We use \(\mathbf{X}_{d,gl}\) to calculate fractional volumes and
fractional intensities.

As voxels for the same image stack generally all have the same
dimensions, we may define fractional volume \(\nu\) for discretised
intensity \(i\):


\[\nu_i = 1 - \frac{1}{N_v}\sum_{k=1}^{N_v}\left[X_{d,gl,k}< i\right]\]

Here \(\left[\ldots\right]\) is an Iverson bracket, yielding
\(1\) if the condition is true and \(0\) otherwise. In essence,
we count the voxels containing a discretised intensity smaller than
\(i\), divide by the total number of voxels, and then subtract this
volume fraction to find \(\nu_i\).

The intensity fraction \(\gamma\) for discretised intensity
\(i\) in the range \(\mathbf{G}\) is calculated as:


\[\gamma_i=\frac{i-\text{min}\left(\mathbf{G}\right)} {\text{max}\left(\mathbf{G}\right) - \text{min}\left(\mathbf{G}\right)}\]

Note that intensity fractions are also calculated for discretised
intensities that are absent in \(\mathbf{X}_{d,gl}\). For example
intensities 2 and 5 are absent in the digital phantom (see
Reference data sets Chapter), but are still evaluated to determine both
the fractional volume and the intensity fraction. An example IVH for the
digital phantom is shown in Table 71.


Table 71 Example intensity-volume histogram evaluated at discrete intensities \(i\) of the digital phantom. The total range
\(\mathbf{G}=[1,6]\), with discretisation interval \(w=1\). Thus
\(\gamma\) is the intensity fraction and \(\nu\) is the
corresponding volume fraction that contains intensity \(i\) or
greater.






	\(i\)

	\(\gamma\)

	\(\nu\)





	1

	0.0

	1.000



	2

	0.2

	0.324



	3

	0.4

	0.324



	4

	0.6

	0.311



	5

	0.8

	0.095



	6

	1.0

	0.095








Aggregating features

We recommend calculating intensity-volume histogram features using the
3D volume (DHQ4). Computing features per slice and subsequently
averaging (3IDG) is not recommended.


Volume at intensity fraction

BC2M
The volume at intensity fraction \(V_x\) is the largest volume
fraction \(\nu\) that has an intensity fraction \(\gamma\) of at
least \(x\%\). This differs from conceptually similar dose-volume
histograms used in radiotherapy planning, where \(V_{10}\) would
indicate the volume fraction receiving at least 10 Gy planned dose.
[ElNaqa2009] defined both \(V_{10}\) and
\(V_{90}\) as features. In the context of this work, these two
features are defined as \(F_{\mathit{ivh.V10}}\) and
\(F_{\mathit{ivh.V90}}\), respectively.


Table 72 Reference values for the volume fraction at 10% intensity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.324

	—

	very strong



	config. A

	0.978

	0.001

	strong



	config. B

	0.977

	0.001

	strong



	config. C

	0.998

	0.001

	moderate



	config. D

	0.972

	0.003

	strong



	config. E

	0.975

	0.002

	strong







Table 73 Reference values for the volume fraction at 90% intensity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.0946

	—

	very strong



	config. A

	\(6.98 \times 10^{-5}\)

	\(1.03 \times 10^{-5}\)

	strong



	config. B

	\(7.31 \times 10^{-5}\)

	\(1.03 \times 10^{-5}\)

	strong



	config. C

	0.000152

	\(2 \times 10^{-5}\)

	strong



	config. D

	\(9 \times 10^{-5}\)

	0.000415

	strong



	config. E

	0.000157

	0.000248

	strong








Intensity at volume fraction

GBPN
The intensity at volume fraction \(I_x\) is the minimum
discretised intensity \(i\) present in at most \(x\%\) of the
volume. [ElNaqa2009] defined both \(I_{10}\) and
\(I_{90}\) as features. In the context of this work, these two
features are defined as \(F_{\mathit{ivh.I10}}\) and
\(F_{\mathit{ivh.I90}}\), respectively.


Table 74 Reference values for the intensity at 10% volume feature.







	data

	value

	tol.

	consensus





	dig. phantom

	5

	—

	very strong



	config. A

	96

	—

	strong



	config. B

	92

	—

	strong



	config. C

	88.8

	0.2

	moderate



	config. D

	87

	0.1

	strong



	config. E

	770

	5

	moderate







Table 75 Reference values for the intensity at 90% volume feature.







	data

	value

	tol.

	consensus





	dig. phantom

	2

	—

	very strong



	config. A

	\(-\)128

	8

	strong



	config. B

	\(-\)135

	8

	strong



	config. C

	\(-\)421

	14

	strong



	config. D

	\(-\)303

	20

	strong



	config. E

	399

	17

	moderate








Volume fraction difference between intensity fractions

DDTU
This feature is the difference between the volume fractions at two
different intensity fractions, e.g. \(V_{10}-V_{90}\)
[ElNaqa2009]. In the context of this work, this
feature is defined as \(F_{\mathit{ivh.V10minusV90}}\).


Table 76 Reference values for the volume fraction difference between 10% and 90% intensity feature.







	data

	value

	tol.

	consensus





	dig. phantom

	0.23

	—

	very strong



	config. A

	0.978

	0.001

	strong



	config. B

	0.977

	0.001

	strong



	config. C

	0.997

	0.001

	strong



	config. D

	0.971

	0.001

	strong



	config. E

	0.974

	0.001

	strong








Intensity fraction difference between volume fractions

CNV2
This feature is the difference between discretised intensities at two
different fractional volumes, e.g. \(I_{10} - I_{90}\)
[ElNaqa2009]. In the context of this work, this
feature is defined as \(F_{\mathit{ivh.I10minusI90}}\).


Table 77 Reference values for the intensity difference between 10% and 90% volume feature.







	data

	value

	tol.

	consensus





	dig. phantom

	3

	—

	very strong



	config. A

	224

	8

	strong



	config. B

	227

	8

	strong



	config. C

	510

	14

	strong



	config. D

	390

	20

	strong



	config. E

	371

	13

	moderate








Area under the IVH curve

9CMM
Note: This feature currently has no reference values and should not
be used.

The area under the IVH curve \(F_{\mathit{ivh.auc}}\) was defined
by [VanVelden2011]. The area under the IVH curve
can be approximated by calculating the Riemann sum using the trapezoidal
rule. Note that if there is only one discretised intensity in the ROI,
we define the area under the IVH curve \(F_{\mathit{ivh.auc}}=0\).




Grey level co-occurrence based features

LFYI
In image analysis, texture is one of the defining sets of features.
Texture features were originally designed to assess surface texture in
2D images. Texture analysis is however not restricted to 2D slices and
can be extended to 3D objects. Image intensities are generally
discretised before calculation of texture features (see
Intensity discretisation).

The grey level co-occurrence matrix (GLCM) is a matrix that expresses
how combinations of discretised intensities (grey levels) of
neighbouring pixels, or voxels in a 3D volume, are distributed along one
of the image directions. Generally, the neighbourhood for GLCM is a
26-connected neighbourhood in 3D and a 8-connected neighbourhood in 2D.
Thus, in 3D there are 13 unique direction vectors within the
neighbourhood for Chebyshev distance \(\delta=1\), i.e.
\((0,0,1)\), \((0,1,0)\), \((1,0,0)\), \((0,1,1)\),
\((0,1,-1)\), \((1,0,1)\), \((1,0,-1)\), \((1,1,0)\),
\((1,-1,0)\), \((1,1,1)\), \((1,1,-1)\), \((1,-1,1)\)
and \((1,-1,-1)\), whereas in 2D the direction vectors are
\((1,0,0)\), \((1,1,0)\), \((0,1,0)\) and \((-1,1,0)\).

A GLCM is calculated for each direction vector, as follows. Let
\(\mathbf{M}_{\mathbf{m}}\) be the \(N_g \times N_g\) grey level
co-occurrence matrix, with \(N_g\) the number of discretised grey
levels present in the ROI intensity mask, and \(\mathbf{m}\) the
particular direction vector. Element \((i,j)\) of the GLCM contains
the frequency at which combinations of discretised grey levels \(i\)
and \(j\) occur in neighbouring voxels along direction
\(\mathbf{m}_{+}=\mathbf{m}\) and along direction
\(\mathbf{m}_{-}= -\mathbf{m}\). Then,
\(\mathbf{M}_{\mathbf{m}} = \mathbf{M}_{\mathbf{m}_{+}} + \mathbf{M}_{\mathbf{m}_{-}} = \mathbf{M}_{\mathbf{m}_{+}} + \mathbf{M}_{\mathbf{m}_{+}}^T\)
[Haralick1973]. As a consequence the GLCM matrix
\(\mathbf{M}_{\mathbf{m}}\) is symmetric. An example of the
calculation of a GLCM is shown in Fig. 10.
Corresponding grey level co-occurrence matrices for each direction are
shown in Fig. 11.


[image: _images/figGLCM1.png]

Fig. 10 Grey levels (a) and corresponding grey level co-occurrence matrices for the 0◦ (b)
and 180◦ directions (c). In vector notation these directions are \(\mathbf{m_{+}} = (1, 0)\) and
\(\mathbf{m_{-}}\) = (−1, 0). To calculate the symmetrical co-occurrence matrix \(\mathbf{M}_{\mathbf{m}}\)
both matrices are summed by element.




[image: _images/figGLCM2.png]

Fig. 11 Grey level co-occurrence matrices for the 0◦ (a), 45◦ (b), 90◦ (c) and 135◦ (d) directions.
In vector notation these directions are \(\mathbf{m} = (1, 0)\), \(\mathbf{m} = (1, 1)\),
\(\mathbf{m} = (0, 1)\) and \(\mathbf{m} = (−1, 1)\), respectively.



GLCM features rely on the probability distribution for the elements of
the GLCM. Let us consider \(\mathbf{M}_{\mathbf{m}=(1,0)}\) from the
example, as shown in Fig. 12. We derive a
probability distribution for grey level co-occurrences,
\(\mathbf{P}_{\mathbf{m}}\), by normalising
\(\mathbf{M}_{\mathbf{m}}\) by the sum of its elements. Each element
\(p_{ij}\) of \(\mathbf{P}_{\mathbf{m}}\) is then the joint
probability of grey levels \(i\) and \(j\) occurring in
neighbouring voxels along direction \(\mathbf{m}\). Then
\(p_{i.} = \sum_{j=1}^{N_g} p_{ij}\) is the row marginal
probability, and \(p_{.j}=\sum_{i=1}^{N_g} p_{ij}\) is the column
marginal probability. As \(\mathbf{P}_{\mathbf{m}}\) is by
definition symmetric, \(p_{i.} = p_{.j}\). Furthermore, let us
consider diagonal and cross-diagonal probabilities \(p_{i-j}\) and
\(p_{i+j}\) [Haralick1973][Unser1986]:


\[\begin{split}\begin{aligned}
p_{i-j,k}&=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{ij}\, \left[k=|i-j|\right]\qquad k=0,\ldots ,N_g-1\\
p_{i+j,k}&=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{ij}\, \left[k=i+j\right]\qquad k=2,\ldots ,2N_g\end{aligned}\end{split}\]

Here, \(\left[\ldots\right]\) is an Iverson bracket, which equals
\(1\) when the condition within the brackets is true and \(0\)
otherwise. In effect we select only combinations of elements
\((i,j)\) for which the condition holds.

It should be noted that while a distance \(\delta=1\) is commonly
used for GLCM, other distances are possible. However, this does not
change the number of For example, for \(\delta=3\) (in 3D) the
voxels at \((0,0,3)\), \((0,3,0)\), \((3,0,0)\),
\((0,3,3)\), \((0,3,-3)\), \((3,0,3)\), \((3,0,-3)\),
\((3,3,0)\), \((3,-3,0)\), \((3,3,3)\), \((3,3,-3)\),
\((3,-3,3)\) and \((3,-3,-3)\) from the center voxel are
considered.


[image: _images/figGLCM3.png]

Fig. 12 Grey level co-occurrence matrix for the 0◦ direction (a); its corresponding probability matrix \(\mathbf{P}_{\mathbf{m}} = (1,0)\)
with marginal probabilities \(p_{i.}\). and \(p_{.j}\); the diagonal probabilities \(p_{i-j}\) (c); and the cross-diagonal
probabilities \(p_{i+j}\) (d). Discrepancies in panels b, c, and d are due to rounding errors caused by showing
only two decimal places. Also, note that due to GLCM symmetry marginal probabilities \(p_{i.}\). and \(p_{.j}\) are the
same in both row and column margins of panel b.





Aggregating features

To improve rotational invariance, GLCM feature values are computed by
aggregating information from the different underlying directional
matrices [Depeursinge2017a]. Five methods can be used
to aggregate GLCMs and arrive at a single feature value. A schematic
example is shown in
Fig. 13. A feature may be
aggregated as follows:


	Features are computed from each 2D directional matrix and averaged
over 2D directions and slices (BTW3).


	Features are computed from a single matrix after merging 2D
directional matrices per slice, and then averaged over slices
(SUJT).


	Features are computed from a single matrix after merging 2D
directional matrices per direction, and then averaged over directions
(JJUI).


	The feature is computed from a single matrix after merging all 2D
directional matrices (ZW7Z).


	Features are computed from each 3D directional matrix and averaged
over the 3D directions (ITBB).


	The feature is computed from a single matrix after merging all 3D
directional matrices (IAZD).




In methods 2,3,4 and 6, matrices are merged by summing the co-occurrence
counts in each matrix element \((i,j)\) over the different matrices.
Probability distributions are subsequently calculated for the merged
GLCM, which is then used to calculate GLCM features. Feature values may
dependent strongly on the aggregation method.


[image: _images/figGLCMCalcApproaches.png]

Fig. 13 Approaches to calculating grey level co-occurrence matrix-based features. M∆k are texture matrices calculated for
direction \(\delta\) in slice \(k\) (if applicable), and \(f_{\delta k}\) is the corresponding feature value.
In (b-d) and (e) the matrices are merged prior to feature calculation.





Distances and distance weighting

The default neighbourhood includes all voxels within Chebyshev distance
\(1\). The corresponding direction vectors are multiplied by the
desired distance \(\delta\). From a technical point-of-view,
direction vectors may also be determined differently, using any distance
norm. In this case, direction vectors are the vectors to the voxels at
\(\delta\), or between \(\delta\) and \(\delta-1\) for the
Euclidean norm. Such usage is however rare and we caution against it due
to potential reproducibility issues.

GLCMs may be weighted for distance by multiplying \(\mathbf{M}\)
with a weighting factor \(w\). By default \(w=1\), but \(w\)
may also be an inverse distance function to weight each GLCM, e.g.
\(w=\|\mathbf{m}\|^{-1}\) or \(w=\exp(-\|\mathbf{m}\|^2)\)
[VanGriethuysen2017], with \(\|\mathbf{m}\|\)
the length of direction vector \(m\). Whether distance weighting
yields different feature values depends on several factors. When
aggregating the feature values, matrices have to be merged first,
otherwise weighting has no effect. Also, it has no effect if the default
neighbourhood is used and the Chebyshev norm is using for weighting. Nor
does weighting have an effect if either Manhattan or Chebyshev norms are
used both for constructing a non-default neighbourhood and for
weighting. Weighting may furthermore have no effect for distance
\(\delta=1\), dependent on distance norms. Because of these
exceptions, we recommend against using distance weighting for GLCM.


Joint maximum

GYBY
Joint maximum [Haralick1979] is the probability
corresponding to the most common grey level co-occurrence in the GLCM:


\[F_{\mathit{cm.joint.max}}=\text{max}(p_{ij})\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.519

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.512

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.489

	—

	strong



	dig. phantom

	2.5D, merged

	0.492

	—

	strong



	dig. phantom

	3D, averaged

	0.503

	—

	very strong



	dig. phantom

	3D, merged

	0.509

	—

	very strong



	config. A

	2D, averaged

	0.109

	0.001

	strong



	config. A

	2D, slice-merged

	0.109

	0.001

	strong



	config. A

	2.5D, direction-merged

	0.0943

	0.0008

	strong



	config. A

	2.5D, merged

	0.0943

	0.0008

	strong



	config. B

	2D, averaged

	0.156

	0.002

	strong



	config. B

	2D, slice-merged

	0.156

	0.002

	strong



	config. B

	2.5D, direction-merged

	0.126

	0.002

	strong



	config. B

	2.5D, merged

	0.126

	0.002

	strong



	config. C

	3D, averaged

	0.111

	0.002

	strong



	config. C

	3D, merged

	0.111

	0.002

	very strong



	config. D

	3D, averaged

	0.232

	0.007

	strong



	config. D

	3D, merged

	0.232

	0.007

	strong



	config. E

	3D, averaged

	0.153

	0.003

	moderate



	config. E

	3D, merged

	0.153

	0.003

	strong








Joint average

60VM
Joint average [Unser1986] is the grey level
weighted sum of joint probabilities:


\[F_{\mathit{cm.joint.avg}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} i\, p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	2.14

	—

	very strong



	dig. phantom

	2D, slice-merged

	2.14

	—

	strong



	dig. phantom

	2.5D, direction-merged

	2.2

	—

	strong



	dig. phantom

	2.5D, merged

	2.2

	—

	strong



	dig. phantom

	3D, averaged

	2.14

	—

	very strong



	dig. phantom

	3D, merged

	2.15

	—

	very strong



	config. A

	2D, averaged

	20.6

	0.1

	strong



	config. A

	2D, slice-merged

	20.6

	0.1

	strong



	config. A

	2.5D, direction-merged

	21.3

	0.1

	strong



	config. A

	2.5D, merged

	21.3

	0.1

	strong



	config. B

	2D, averaged

	18.7

	0.3

	strong



	config. B

	2D, slice-merged

	18.7

	0.3

	strong



	config. B

	2.5D, direction-merged

	19.2

	0.3

	strong



	config. B

	2.5D, merged

	19.2

	0.3

	strong



	config. C

	3D, averaged

	39

	0.2

	strong



	config. C

	3D, merged

	39

	0.2

	strong



	config. D

	3D, averaged

	18.9

	0.5

	strong



	config. D

	3D, merged

	18.9

	0.5

	strong



	config. E

	3D, averaged

	22.1

	0.3

	strong



	config. E

	3D, merged

	22.1

	0.3

	strong








Joint variance

UR99
The joint variance [Unser1986], which is also
called sum of squares [Haralick1973], is defined
as:


\[F_{\mathit{cm.joint.var}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i-\mu\right)^2 p_{ij}\]

Here \(\mu\) is equal to the value of
\(F_{\mathit{cm.joint.avg}}\), which was defined above.










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	2.69

	—

	very strong



	dig. phantom

	2D, slice-merged

	2.71

	—

	strong



	dig. phantom

	2.5D, direction-merged

	3.22

	—

	strong



	dig. phantom

	2.5D, merged

	3.24

	—

	strong



	dig. phantom

	3D, averaged

	3.1

	—

	very strong



	dig. phantom

	3D, merged

	3.13

	—

	very strong



	config. A

	2D, averaged

	27

	0.4

	strong



	config. A

	2D, slice-merged

	27

	0.4

	strong



	config. A

	2.5D, direction-merged

	18.6

	0.5

	strong



	config. A

	2.5D, merged

	18.6

	0.5

	strong



	config. B

	2D, averaged

	21

	0.3

	strong



	config. B

	2D, slice-merged

	21

	0.3

	strong



	config. B

	2.5D, direction-merged

	14.2

	0.1

	strong



	config. B

	2.5D, merged

	14.2

	0.1

	strong



	config. C

	3D, averaged

	73.7

	2

	strong



	config. C

	3D, merged

	73.8

	2

	very strong



	config. D

	3D, averaged

	17.6

	0.4

	strong



	config. D

	3D, merged

	17.6

	0.4

	strong



	config. E

	3D, averaged

	24.4

	0.9

	moderate



	config. E

	3D, merged

	24.4

	0.9

	strong








Joint entropy

TU9B
Joint entropy [Haralick1973] is defined as:


\[F_{\mathit{cm.joint.entr}}=-\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{ij} \log_2 p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	2.05

	—

	very strong



	dig. phantom

	2D, slice-merged

	2.24

	—

	strong



	dig. phantom

	2.5D, direction-merged

	2.48

	—

	strong



	dig. phantom

	2.5D, merged

	2.61

	—

	strong



	dig. phantom

	3D, averaged

	2.4

	—

	very strong



	dig. phantom

	3D, merged

	2.57

	—

	very strong



	config. A

	2D, averaged

	5.82

	0.04

	strong



	config. A

	2D, slice-merged

	5.9

	0.04

	strong



	config. A

	2.5D, direction-merged

	5.78

	0.04

	strong



	config. A

	2.5D, merged

	5.79

	0.04

	strong



	config. B

	2D, averaged

	5.26

	0.02

	strong



	config. B

	2D, slice-merged

	5.45

	0.01

	strong



	config. B

	2.5D, direction-merged

	5.45

	0.01

	strong



	config. B

	2.5D, merged

	5.46

	0.01

	strong



	config. C

	3D, averaged

	6.39

	0.06

	strong



	config. C

	3D, merged

	6.42

	0.06

	very strong



	config. D

	3D, averaged

	4.95

	0.03

	strong



	config. D

	3D, merged

	4.96

	0.03

	strong



	config. E

	3D, averaged

	5.6

	0.03

	strong



	config. E

	3D, merged

	5.61

	0.03

	strong








Difference average

TF7R
The difference average [Unser1986] for the diagonal
probabilities is defined as:


\[F_{\mathit{cm.diff.avg}}=\sum_{k=0}^{N_g-1} k\, p_{i-j,k}\]

By definition difference average is equivalent to the dissimilarity
feature [VanGriethuysen2017].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	1.42

	—

	very strong



	dig. phantom

	2D, slice-merged

	1.4

	—

	strong



	dig. phantom

	2.5D, direction-merged

	1.46

	—

	strong



	dig. phantom

	2.5D, merged

	1.44

	—

	strong



	dig. phantom

	3D, averaged

	1.43

	—

	very strong



	dig. phantom

	3D, merged

	1.38

	—

	very strong



	config. A

	2D, averaged

	1.58

	0.03

	strong



	config. A

	2D, slice-merged

	1.57

	0.03

	strong



	config. A

	2.5D, direction-merged

	1.35

	0.03

	strong



	config. A

	2.5D, merged

	1.35

	0.03

	strong



	config. B

	2D, averaged

	1.81

	0.01

	strong



	config. B

	2D, slice-merged

	1.81

	0.01

	strong



	config. B

	2.5D, direction-merged

	1.47

	0.01

	strong



	config. B

	2.5D, merged

	1.47

	0.01

	strong



	config. C

	3D, averaged

	2.17

	0.05

	strong



	config. C

	3D, merged

	2.16

	0.05

	strong



	config. D

	3D, averaged

	1.29

	0.01

	strong



	config. D

	3D, merged

	1.29

	0.01

	strong



	config. E

	3D, averaged

	1.7

	0.01

	strong



	config. E

	3D, merged

	1.7

	0.01

	strong








Difference variance

D3YU
The difference variance for the diagonal probabilities
[Haralick1973] is defined as:


\[F_{\mathit{cm.diff.var}}=\sum_{k=0}^{N_g-1} (k-\mu)^2 p_{i-j,k}\]

Here \(\mu\) is equal to the value of difference average.










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	2.9

	—

	very strong



	dig. phantom

	2D, slice-merged

	3.06

	—

	strong



	dig. phantom

	2.5D, direction-merged

	3.11

	—

	strong



	dig. phantom

	2.5D, merged

	3.23

	—

	strong



	dig. phantom

	3D, averaged

	3.06

	—

	very strong



	dig. phantom

	3D, merged

	3.21

	—

	very strong



	config. A

	2D, averaged

	4.94

	0.19

	strong



	config. A

	2D, slice-merged

	4.96

	0.19

	strong



	config. A

	2.5D, direction-merged

	4.12

	0.2

	strong



	config. A

	2.5D, merged

	4.14

	0.2

	strong



	config. B

	2D, averaged

	7.74

	0.05

	strong



	config. B

	2D, slice-merged

	7.76

	0.05

	strong



	config. B

	2.5D, direction-merged

	6.48

	0.06

	strong



	config. B

	2.5D, merged

	6.48

	0.06

	strong



	config. C

	3D, averaged

	14.4

	0.5

	strong



	config. C

	3D, merged

	14.4

	0.5

	strong



	config. D

	3D, averaged

	5.37

	0.11

	strong



	config. D

	3D, merged

	5.38

	0.11

	strong



	config. E

	3D, averaged

	8.22

	0.06

	strong



	config. E

	3D, merged

	8.23

	0.06

	strong








Difference entropy

NTRS
The difference entropy for the diagonal probabilities
[Haralick1973] is defined as:


\[F_{\mathit{cm.diff.entr}}=-\sum_{k=0}^{N_g-1} p_{i-j,k} \log_2 p_{i-j,k}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	1.4

	—

	very strong



	dig. phantom

	2D, slice-merged

	1.49

	—

	strong



	dig. phantom

	2.5D, direction-merged

	1.61

	—

	strong



	dig. phantom

	2.5D, merged

	1.67

	—

	strong



	dig. phantom

	3D, averaged

	1.56

	—

	very strong



	dig. phantom

	3D, merged

	1.64

	—

	very strong



	config. A

	2D, averaged

	2.27

	0.03

	strong



	config. A

	2D, slice-merged

	2.28

	0.03

	strong



	config. A

	2.5D, direction-merged

	2.16

	0.03

	strong



	config. A

	2.5D, merged

	2.16

	0.03

	strong



	config. B

	2D, averaged

	2.35

	0.01

	strong



	config. B

	2D, slice-merged

	2.38

	0.01

	strong



	config. B

	2.5D, direction-merged

	2.24

	0.01

	moderate



	config. B

	2.5D, merged

	2.24

	0.01

	strong



	config. C

	3D, averaged

	2.64

	0.03

	strong



	config. C

	3D, merged

	2.64

	0.03

	very strong



	config. D

	3D, averaged

	2.13

	0.01

	strong



	config. D

	3D, merged

	2.14

	0.01

	strong



	config. E

	3D, averaged

	2.39

	0.01

	strong



	config. E

	3D, merged

	2.4

	0.01

	strong








Sum average

ZGXS
The sum average for the cross-diagonal probabilities
[Haralick1973] is defined as:


\[F_{\mathit{cm.sum.avg}}=\sum_{k=2}^{2N_g} k\, p_{i+j,k}\]

By definition,
\(F_{\mathit{cm.sum.avg}} = 2 F_{\mathit{cm.joint.avg}}\)
[VanGriethuysen2017].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	4.28

	—

	very strong



	dig. phantom

	2D, slice-merged

	4.29

	—

	strong



	dig. phantom

	2.5D, direction-merged

	4.41

	—

	strong



	dig. phantom

	2.5D, merged

	4.41

	—

	strong



	dig. phantom

	3D, averaged

	4.29

	—

	very strong



	dig. phantom

	3D, merged

	4.3

	—

	very strong



	config. A

	2D, averaged

	41.3

	0.1

	strong



	config. A

	2D, slice-merged

	41.3

	0.1

	strong



	config. A

	2.5D, direction-merged

	42.7

	0.1

	strong



	config. A

	2.5D, merged

	42.7

	0.1

	strong



	config. B

	2D, averaged

	37.4

	0.5

	strong



	config. B

	2D, slice-merged

	37.4

	0.5

	strong



	config. B

	2.5D, direction-merged

	38.5

	0.6

	strong



	config. B

	2.5D, merged

	38.5

	0.6

	strong



	config. C

	3D, averaged

	78

	0.3

	strong



	config. C

	3D, merged

	78

	0.3

	strong



	config. D

	3D, averaged

	37.7

	0.8

	strong



	config. D

	3D, merged

	37.7

	0.8

	strong



	config. E

	3D, averaged

	44.3

	0.4

	strong



	config. E

	3D, merged

	44.3

	0.4

	strong








Sum variance

OEEB
The sum variance for the cross-diagonal probabilities
[Haralick1973] is defined as:


\[F_{\mathit{cm.sum.var}}=\sum_{k=2}^{2N_g} (k-\mu)^2 p_{i+j,k}\]

Here \(\mu\) is equal to the value of sum average. Sum variance
is mathematically identical to the cluster tendency feature
[VanGriethuysen2017].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	5.47

	—

	very strong



	dig. phantom

	2D, slice-merged

	5.66

	—

	strong



	dig. phantom

	2.5D, direction-merged

	7.48

	—

	strong



	dig. phantom

	2.5D, merged

	7.65

	—

	strong



	dig. phantom

	3D, averaged

	7.07

	—

	very strong



	dig. phantom

	3D, merged

	7.41

	—

	very strong



	config. A

	2D, averaged

	100

	1

	strong



	config. A

	2D, slice-merged

	100

	1

	strong



	config. A

	2.5D, direction-merged

	68.5

	1.3

	strong



	config. A

	2.5D, merged

	68.5

	1.3

	strong



	config. B

	2D, averaged

	72.1

	1

	strong



	config. B

	2D, slice-merged

	72.3

	1

	strong



	config. B

	2.5D, direction-merged

	48.1

	0.4

	strong



	config. B

	2.5D, merged

	48.1

	0.4

	strong



	config. C

	3D, averaged

	276

	8

	strong



	config. C

	3D, merged

	276

	8

	very strong



	config. D

	3D, averaged

	63.4

	1.3

	strong



	config. D

	3D, merged

	63.5

	1.3

	strong



	config. E

	3D, averaged

	86.6

	3.3

	moderate



	config. E

	3D, merged

	86.7

	3.3

	strong








Sum entropy

P6QZ
The sum entropy for the cross-diagonal probabilities
[Haralick1973] is defined as:


\[F_{\mathit{cm.sum.entr}}=-\sum_{k=2}^{2N_g} p_{i+j,k} \log_2 p_{i+j,k}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	1.6

	—

	very strong



	dig. phantom

	2D, slice-merged

	1.79

	—

	strong



	dig. phantom

	2.5D, direction-merged

	2.01

	—

	strong



	dig. phantom

	2.5D, merged

	2.14

	—

	strong



	dig. phantom

	3D, averaged

	1.92

	—

	very strong



	dig. phantom

	3D, merged

	2.11

	—

	very strong



	config. A

	2D, averaged

	4.19

	0.03

	strong



	config. A

	2D, slice-merged

	4.21

	0.03

	strong



	config. A

	2.5D, direction-merged

	4.17

	0.03

	strong



	config. A

	2.5D, merged

	4.18

	0.03

	strong



	config. B

	2D, averaged

	3.83

	0.01

	strong



	config. B

	2D, slice-merged

	3.89

	0.01

	strong



	config. B

	2.5D, direction-merged

	3.91

	0.01

	strong



	config. B

	2.5D, merged

	3.91

	0.01

	strong



	config. C

	3D, averaged

	4.56

	0.04

	strong



	config. C

	3D, merged

	4.56

	0.04

	very strong



	config. D

	3D, averaged

	3.68

	0.02

	strong



	config. D

	3D, merged

	3.68

	0.02

	strong



	config. E

	3D, averaged

	3.96

	0.02

	strong



	config. E

	3D, merged

	3.97

	0.02

	strong








Angular second moment

8ZQL
The angular second moment [Haralick1973], which
represents the energy of \(\mathbf{P}_{\Delta}\), is defined as:


\[F_{\mathit{cm.energy}} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{ij}^2\]

This feature is also called energy
[Unser1986][Aerts2014] and uniformity
[Clausi2002].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.368

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.352

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.286

	—

	strong



	dig. phantom

	2.5D, merged

	0.277

	—

	strong



	dig. phantom

	3D, averaged

	0.303

	—

	very strong



	dig. phantom

	3D, merged

	0.291

	—

	very strong



	config. A

	2D, averaged

	0.045

	0.0008

	strong



	config. A

	2D, slice-merged

	0.0446

	0.0008

	strong



	config. A

	2.5D, direction-merged

	0.0429

	0.0007

	strong



	config. A

	2.5D, merged

	0.0427

	0.0007

	strong



	config. B

	2D, averaged

	0.0678

	0.0006

	strong



	config. B

	2D, slice-merged

	0.0669

	0.0006

	strong



	config. B

	2.5D, direction-merged

	0.0581

	0.0006

	strong



	config. B

	2.5D, merged

	0.058

	0.0006

	strong



	config. C

	3D, averaged

	0.045

	0.001

	strong



	config. C

	3D, merged

	0.0447

	0.001

	very strong



	config. D

	3D, averaged

	0.11

	0.003

	strong



	config. D

	3D, merged

	0.109

	0.003

	strong



	config. E

	3D, averaged

	0.0638

	0.0009

	strong



	config. E

	3D, merged

	0.0635

	0.0009

	strong








Contrast

ACUI
Contrast assesses grey level variations
[Haralick1973]. Hence elements of
\(\mathbf{M}_{\Delta}\) that represent large grey level differences
receive greater weight. Contrast is defined as
[Clausi2002]:


\[F_{\mathit{cm.contrast}}= \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i-j\right)^2 p_{ij}\]

Note that the original definition by [Haralick1973]
is seemingly more complex, but rearranging and simplifying terms leads
to the above formulation of contrast.










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	5.28

	—

	very strong



	dig. phantom

	2D, slice-merged

	5.19

	—

	strong



	dig. phantom

	2.5D, direction-merged

	5.39

	—

	strong



	dig. phantom

	2.5D, merged

	5.29

	—

	strong



	dig. phantom

	3D, averaged

	5.32

	—

	very strong



	dig. phantom

	3D, merged

	5.12

	—

	very strong



	config. A

	2D, averaged

	7.85

	0.26

	strong



	config. A

	2D, slice-merged

	7.82

	0.26

	strong



	config. A

	2.5D, direction-merged

	5.96

	0.27

	strong



	config. A

	2.5D, merged

	5.95

	0.27

	strong



	config. B

	2D, averaged

	11.9

	0.1

	strong



	config. B

	2D, slice-merged

	11.8

	0.1

	strong



	config. B

	2.5D, direction-merged

	8.66

	0.09

	strong



	config. B

	2.5D, merged

	8.65

	0.09

	strong



	config. C

	3D, averaged

	19.2

	0.7

	strong



	config. C

	3D, merged

	19.1

	0.7

	very strong



	config. D

	3D, averaged

	7.07

	0.13

	strong



	config. D

	3D, merged

	7.05

	0.13

	strong



	config. E

	3D, averaged

	11.1

	0.1

	strong



	config. E

	3D, merged

	11.1

	0.1

	strong








Dissimilarity

8S9J
Dissimilarity [Clausi2002] is conceptually similar
to the contrast feature, and is defined as:


\[F_{\mathit{cm.dissimilarity}}= \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} |i-j|\, p_{ij}\]

By definition dissimilarity is equivalent to the difference average
feature [VanGriethuysen2017].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	1.42

	—

	very strong



	dig. phantom

	2D, slice-merged

	1.4

	—

	strong



	dig. phantom

	2.5D, direction-merged

	1.46

	—

	strong



	dig. phantom

	2.5D, merged

	1.44

	—

	strong



	dig. phantom

	3D, averaged

	1.43

	—

	very strong



	dig. phantom

	3D, merged

	1.38

	—

	very strong



	config. A

	2D, averaged

	1.58

	0.03

	strong



	config. A

	2D, slice-merged

	1.57

	0.03

	strong



	config. A

	2.5D, direction-merged

	1.35

	0.03

	strong



	config. A

	2.5D, merged

	1.35

	0.03

	strong



	config. B

	2D, averaged

	1.81

	0.01

	strong



	config. B

	2D, slice-merged

	1.81

	0.01

	strong



	config. B

	2.5D, direction-merged

	1.47

	0.01

	strong



	config. B

	2.5D, merged

	1.47

	0.01

	strong



	config. C

	3D, averaged

	2.17

	0.05

	strong



	config. C

	3D, merged

	2.16

	0.05

	very strong



	config. D

	3D, averaged

	1.29

	0.01

	strong



	config. D

	3D, merged

	1.29

	0.01

	strong



	config. E

	3D, averaged

	1.7

	0.01

	strong



	config. E

	3D, merged

	1.7

	0.01

	strong








Inverse difference

IB1Z
Inverse difference is a measure of homogeneity
[Clausi2002]. Grey level co-occurrences with a large
difference in levels are weighed less, thus lowering the total feature
value. The feature score is maximal if all grey levels are the same.
Inverse difference is defined as:


\[F_{\mathit{cm.inv.diff}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{p_{ij}}{1+|i-j|}\]

The equation above may also be expressed in terms of diagonal
probabilities [VanGriethuysen2017]:


\[F_{\mathit{cm.inv.diff}}=\sum_{k=0}^{N_g-1} \frac{p_{i-j,k}}{1+k}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.678

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.683

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.668

	—

	strong



	dig. phantom

	2.5D, merged

	0.673

	—

	strong



	dig. phantom

	3D, averaged

	0.677

	—

	very strong



	dig. phantom

	3D, merged

	0.688

	—

	very strong



	config. A

	2D, averaged

	0.581

	0.003

	strong



	config. A

	2D, slice-merged

	0.581

	0.003

	strong



	config. A

	2.5D, direction-merged

	0.605

	0.003

	strong



	config. A

	2.5D, merged

	0.605

	0.003

	strong



	config. B

	2D, averaged

	0.592

	0.001

	strong



	config. B

	2D, slice-merged

	0.593

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.628

	0.001

	strong



	config. B

	2.5D, merged

	0.628

	0.001

	strong



	config. C

	3D, averaged

	0.582

	0.004

	strong



	config. C

	3D, merged

	0.583

	0.004

	very strong



	config. D

	3D, averaged

	0.682

	0.003

	strong



	config. D

	3D, merged

	0.682

	0.003

	strong



	config. E

	3D, averaged

	0.608

	0.001

	moderate



	config. E

	3D, merged

	0.608

	0.001

	strong








Normalised inverse difference

NDRX
[Clausi2002] suggested normalising inverse
difference to improve classification ability. The normalised feature is
then defined as:


\[F_{\mathit{cm.inv.diff.norm}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{p_{ij}}{1+|i-j|/N_g}\]

Note that in Clausi’s definition, \(|i-j|^2/N_g^2\) is used instead
of \(|i-j|/N_g\), which is likely an oversight, as this exactly
matches the definition of the normalised inverse difference moment
feature.

The equation may also be expressed in terms of diagonal
probabilities [VanGriethuysen2017]:


\[F_{\mathit{cm.inv.diff.norm}}=\sum_{k=0}^{N_g-1} \frac{p_{i-j,k}}{1+k/N_g}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.851

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.854

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.847

	—

	strong



	dig. phantom

	2.5D, merged

	0.85

	—

	strong



	dig. phantom

	3D, averaged

	0.851

	—

	very strong



	dig. phantom

	3D, merged

	0.856

	—

	very strong



	config. A

	2D, averaged

	0.961

	0.001

	strong



	config. A

	2D, slice-merged

	0.961

	0.001

	strong



	config. A

	2.5D, direction-merged

	0.966

	0.001

	strong



	config. A

	2.5D, merged

	0.966

	0.001

	strong



	config. B

	2D, averaged

	0.952

	0.001

	strong



	config. B

	2D, slice-merged

	0.952

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.96

	0.001

	strong



	config. B

	2.5D, merged

	0.96

	0.001

	strong



	config. C

	3D, averaged

	0.966

	0.001

	strong



	config. C

	3D, merged

	0.966

	0.001

	very strong



	config. D

	3D, averaged

	0.965

	0.001

	strong



	config. D

	3D, merged

	0.965

	0.001

	strong



	config. E

	3D, averaged

	0.955

	0.001

	strong



	config. E

	3D, merged

	0.955

	0.001

	strong








Inverse difference moment

WF0Z
Inverse difference moment [Haralick1973] is similar
in concept to the inverse difference feature, but with lower weights
for elements that are further from the diagonal:


\[F_{\mathit{cm.inv.diff.mom}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{p_{ij}}{1+\left(i-j\right)^2}\]

The equation above may also be expressed in terms of diagonal
probabilities [VanGriethuysen2017]:


\[F_{\mathit{cm.inv.diff.mom}}=\sum_{k=0}^{N_g-1} \frac{p_{i-j,k}}{1+k^2}\]

This feature is also called homogeneity
[Unser1986].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.619

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.625

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.606

	—

	strong



	dig. phantom

	2.5D, merged

	0.613

	—

	strong



	dig. phantom

	3D, averaged

	0.618

	—

	very strong



	dig. phantom

	3D, merged

	0.631

	—

	very strong



	config. A

	2D, averaged

	0.544

	0.003

	strong



	config. A

	2D, slice-merged

	0.544

	0.003

	strong



	config. A

	2.5D, direction-merged

	0.573

	0.003

	strong



	config. A

	2.5D, merged

	0.573

	0.003

	strong



	config. B

	2D, averaged

	0.557

	0.001

	strong



	config. B

	2D, slice-merged

	0.558

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.6

	0.001

	strong



	config. B

	2.5D, merged

	0.6

	0.001

	strong



	config. C

	3D, averaged

	0.547

	0.004

	strong



	config. C

	3D, merged

	0.548

	0.004

	very strong



	config. D

	3D, averaged

	0.656

	0.003

	strong



	config. D

	3D, merged

	0.657

	0.003

	strong



	config. E

	3D, averaged

	0.576

	0.001

	strong



	config. E

	3D, merged

	0.577

	0.001

	strong








Normalised inverse difference moment

1QCO
[Clausi2002] suggested normalising inverse
difference moment to improve classification performance. This leads to
the following definition:


\[F_{\mathit{cm.inv.diff.mom.norm}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{p_{ij}}{1+\left(i-j\right)^2/N_g^2}\]

The equation above may also be expressed in terms of diagonal
probabilities [VanGriethuysen2017]:


\[F_{\mathit{cm.inv.diff.mom.norm}}=\sum_{k=0}^{N_g-1} \frac{p_{i-j,k}}{1+\left(k/N_g\right)^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.899

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.901

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.897

	—

	strong



	dig. phantom

	2.5D, merged

	0.899

	—

	strong



	dig. phantom

	3D, averaged

	0.898

	—

	very strong



	dig. phantom

	3D, merged

	0.902

	—

	very strong



	config. A

	2D, averaged

	0.994

	0.001

	strong



	config. A

	2D, slice-merged

	0.994

	0.001

	strong



	config. A

	2.5D, direction-merged

	0.996

	0.001

	strong



	config. A

	2.5D, merged

	0.996

	0.001

	strong



	config. B

	2D, averaged

	0.99

	0.001

	strong



	config. B

	2D, slice-merged

	0.99

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.992

	0.001

	strong



	config. B

	2.5D, merged

	0.992

	0.001

	strong



	config. C

	3D, averaged

	0.994

	0.001

	strong



	config. C

	3D, merged

	0.994

	0.001

	very strong



	config. D

	3D, averaged

	0.994

	0.001

	strong



	config. D

	3D, merged

	0.994

	0.001

	strong



	config. E

	3D, averaged

	0.99

	0.001

	strong



	config. E

	3D, merged

	0.99

	0.001

	strong








Inverse variance

E8JP
The inverse variance [Aerts2014] feature is defined
as:


\[F_{\mathit{cm.inv.var}}=2\sum_{i=1}^{N_g} \sum_{j>i}^{N_g} \frac{p_{ij}}{\left(i-j\right)^2}\]

The equation above may also be expressed in terms of diagonal
probabilities. Note that in this case, summation starts at \(k=1\)
instead of \(k=0\)[VanGriethuysen2017]:


\[F_{\mathit{cm.inv.var}}=\sum_{k=1}^{N_g-1} \frac{p_{i-j,k}}{k^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.0567

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.0553

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.0597

	—

	strong



	dig. phantom

	2.5D, merged

	0.0582

	—

	strong



	dig. phantom

	3D, averaged

	0.0604

	—

	very strong



	dig. phantom

	3D, merged

	0.0574

	—

	very strong



	config. A

	2D, averaged

	0.441

	0.001

	strong



	config. A

	2D, slice-merged

	0.441

	0.001

	strong



	config. A

	2.5D, direction-merged

	0.461

	0.002

	strong



	config. A

	2.5D, merged

	0.461

	0.002

	strong



	config. B

	2D, averaged

	0.401

	0.002

	strong



	config. B

	2D, slice-merged

	0.401

	0.002

	strong



	config. B

	2.5D, direction-merged

	0.424

	0.003

	strong



	config. B

	2.5D, merged

	0.424

	0.003

	strong



	config. C

	3D, averaged

	0.39

	0.003

	strong



	config. C

	3D, merged

	0.39

	0.003

	very strong



	config. D

	3D, averaged

	0.341

	0.005

	strong



	config. D

	3D, merged

	0.34

	0.005

	strong



	config. E

	3D, averaged

	0.41

	0.004

	strong



	config. E

	3D, merged

	0.41

	0.004

	strong








Correlation

NI2N
Correlation [Haralick1973] is defined as:


\[F_{\mathit{cm.corr}}=\frac{1}{\sigma_{i.}\,\sigma_{.j}} \left(-\mu_{i.}\,\mu_{.j} + \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} i\,j\,p_{ij}\right)\]

\(\mu_{i.}=\sum_{i=1}^{N_g}i\,p_{i.}\) and
\(\sigma_{i.}=\left(\sum_{i=1}^{N_g} (i-\mu_{i.})^2 p_{i.}\right)^{1/2}\)
are the mean and standard deviation of row marginal probability
\(p_{i.}\), respectively. Likewise, \(\mu_{.j}\) and
\(\sigma_{.j}\) are the mean and standard deviation of the column
marginal probability \(p_{.j}\), respectively. The calculation of
correlation can be simplified since \(\mathbf{P}_{\Delta}\) is
symmetrical:


\[F_{\mathit{cm.corr}}=\frac{1}{\sigma_{i.}^2} \left(-\mu_{i.}^2 + \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} i\,j\,p_{ij}\right)\]

An equivalent formulation of correlation is:


\[F_{\mathit{cm.corr}}=\frac{1}{\sigma_{i.}\,\sigma_{.j}} \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i-\mu_{i.}\right) \left(j-\mu_{.j}\right)p_{ij}\]

Again, simplifying due to matrix symmetry yields:


\[F_{\mathit{cm.corr}}=\frac{1}{\sigma_{i.}^2} \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i-\mu_{i.}\right) \left(j-\mu_{i.}\right)p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	\(-\)0.0121

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.0173

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.178

	—

	strong



	dig. phantom

	2.5D, merged

	0.182

	—

	strong



	dig. phantom

	3D, averaged

	0.157

	—

	very strong



	dig. phantom

	3D, merged

	0.183

	—

	very strong



	config. A

	2D, averaged

	0.778

	0.002

	strong



	config. A

	2D, slice-merged

	0.78

	0.002

	strong



	config. A

	2.5D, direction-merged

	0.839

	0.003

	strong



	config. A

	2.5D, merged

	0.84

	0.003

	strong



	config. B

	2D, averaged

	0.577

	0.002

	strong



	config. B

	2D, slice-merged

	0.58

	0.002

	strong



	config. B

	2.5D, direction-merged

	0.693

	0.003

	strong



	config. B

	2.5D, merged

	0.695

	0.003

	strong



	config. C

	3D, averaged

	0.869

	0.001

	strong



	config. C

	3D, merged

	0.871

	0.001

	strong



	config. D

	3D, averaged

	0.798

	0.005

	strong



	config. D

	3D, merged

	0.8

	0.005

	strong



	config. E

	3D, averaged

	0.771

	0.006

	moderate



	config. E

	3D, merged

	0.773

	0.006

	strong








Autocorrelation

QWB0
[soh1999texture] defined autocorrelation as:


\[F_{\mathit{cm.auto.corr}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} i\,j\,p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	5.09

	—

	very strong



	dig. phantom

	2D, slice-merged

	5.14

	—

	strong



	dig. phantom

	2.5D, direction-merged

	5.4

	—

	strong



	dig. phantom

	2.5D, merged

	5.45

	—

	strong



	dig. phantom

	3D, averaged

	5.06

	—

	very strong



	dig. phantom

	3D, merged

	5.19

	—

	very strong



	config. A

	2D, averaged

	455

	2

	strong



	config. A

	2D, slice-merged

	455

	2

	strong



	config. A

	2.5D, direction-merged

	471

	2

	strong



	config. A

	2.5D, merged

	471

	2

	strong



	config. B

	2D, averaged

	369

	11

	strong



	config. B

	2D, slice-merged

	369

	11

	strong



	config. B

	2.5D, direction-merged

	380

	11

	strong



	config. B

	2.5D, merged

	380

	11

	strong



	config. C

	3D, averaged

	\(1.58 \times 10^{3}\)

	10

	strong



	config. C

	3D, merged

	\(1.58 \times 10^{3}\)

	10

	strong



	config. D

	3D, averaged

	370

	16

	strong



	config. D

	3D, merged

	370

	16

	very strong



	config. E

	3D, averaged

	509

	8

	strong



	config. E

	3D, merged

	509

	8

	strong








Cluster tendency

DG8W
Cluster tendency [Aerts2014] is defined as:


\[F_{\mathit{cm.clust.tend}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i+j-\mu_{i.}-\mu_{.j}\right)^2 p_{ij}\]

Here \(\mu_{i.}=\sum_{i=1}^{N_g} i\, p_{i.}\) and
\(\mu_{.j}=\sum_{j=1}^{N_g} j\, p_{.j}\). Because of the symmetric
nature of \(\mathbf{P}_{\Delta}\), the feature can also be
formulated as:


\[F_{\mathit{cm.clust.tend}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i+j-2\mu_{i.}\right)^2 p_{ij}\]

Cluster tendency is mathematically equal to the sum variance
feature [VanGriethuysen2017].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	5.47

	—

	very strong



	dig. phantom

	2D, slice-merged

	5.66

	—

	strong



	dig. phantom

	2.5D, direction-merged

	7.48

	—

	strong



	dig. phantom

	2.5D, merged

	7.65

	—

	strong



	dig. phantom

	3D, averaged

	7.07

	—

	very strong



	dig. phantom

	3D, merged

	7.41

	—

	very strong



	config. A

	2D, averaged

	100

	1

	strong



	config. A

	2D, slice-merged

	100

	1

	strong



	config. A

	2.5D, direction-merged

	68.5

	1.3

	strong



	config. A

	2.5D, merged

	68.5

	1.3

	strong



	config. B

	2D, averaged

	72.1

	1

	strong



	config. B

	2D, slice-merged

	72.3

	1

	strong



	config. B

	2.5D, direction-merged

	48.1

	0.4

	strong



	config. B

	2.5D, merged

	48.1

	0.4

	strong



	config. C

	3D, averaged

	276

	8

	strong



	config. C

	3D, merged

	276

	8

	very strong



	config. D

	3D, averaged

	63.4

	1.3

	strong



	config. D

	3D, merged

	63.5

	1.3

	strong



	config. E

	3D, averaged

	86.6

	3.3

	moderate



	config. E

	3D, merged

	86.7

	3.3

	strong








Cluster shade

7NFM
Cluster shade [Unser1986] is defined as:


\[F_{\mathit{cm.clust.shade}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i+j-\mu_{i.}-\mu_{.j}\right)^3 p_{ij}\]

As with cluster tendency,
\(\mu_{i.}=\sum_{i=1}^{N_g} i\, p_{i.}\) and
\(\mu_{.j}=\sum_{j=1}^{N_g} j\, p_{.j}\). Because of the symmetric
nature of \(\mathbf{P}_{\Delta}\), the feature can also be
formulated as:


\[F_{\mathit{cm.clust.shade}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i+j-2\mu_{i.}\right)^3 p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	7

	—

	very strong



	dig. phantom

	2D, slice-merged

	6.98

	—

	strong



	dig. phantom

	2.5D, direction-merged

	16.6

	—

	strong



	dig. phantom

	2.5D, merged

	16.4

	—

	strong



	dig. phantom

	3D, averaged

	16.6

	—

	very strong



	dig. phantom

	3D, merged

	17.4

	—

	very strong



	config. A

	2D, averaged

	\(-1.04 \times 10^{3}\)

	20

	strong



	config. A

	2D, slice-merged

	\(-1.05 \times 10^{3}\)

	20

	strong



	config. A

	2.5D, direction-merged

	\(-1.49 \times 10^{3}\)

	30

	strong



	config. A

	2.5D, merged

	\(-1.49 \times 10^{3}\)

	30

	strong



	config. B

	2D, averaged

	\(-\)668

	17

	strong



	config. B

	2D, slice-merged

	\(-\)673

	17

	strong



	config. B

	2.5D, direction-merged

	\(-\)905

	19

	strong



	config. B

	2.5D, merged

	\(-\)906

	19

	strong



	config. C

	3D, averaged

	\(-1.06 \times 10^{4}\)

	300

	strong



	config. C

	3D, merged

	\(-1.06 \times 10^{4}\)

	300

	very strong



	config. D

	3D, averaged

	\(-1.27 \times 10^{3}\)

	40

	strong



	config. D

	3D, merged

	\(-1.28 \times 10^{3}\)

	40

	strong



	config. E

	3D, averaged

	\(-2.07 \times 10^{3}\)

	70

	moderate



	config. E

	3D, merged

	\(-2.08 \times 10^{3}\)

	70

	strong








Cluster prominence

AE86
Cluster prominence [Unser1986] is defined as:


\[F_{\mathit{cm.clust.prom}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i+j-\mu_{i.}-\mu_{.j}\right)^4 p_{ij}\]

As before, \(\mu_{i.}=\sum_{i=1}^{N_g} i\, p_{i.}\) and
\(\mu_{.j}=\sum_{j=1}^{N_g} j\, p_{.j}\). Because of the symmetric
nature of \(\mathbf{P}_{\Delta}\), the feature can also be
formulated as:


\[F_{\mathit{cm.clust.prom}}=\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(i+j-2\mu_{i.}\right)^4 p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	79.1

	—

	very strong



	dig. phantom

	2D, slice-merged

	80.4

	—

	strong



	dig. phantom

	2.5D, direction-merged

	147

	—

	strong



	dig. phantom

	2.5D, merged

	142

	—

	strong



	dig. phantom

	3D, averaged

	145

	—

	very strong



	dig. phantom

	3D, merged

	147

	—

	very strong



	config. A

	2D, averaged

	\(5.27 \times 10^{4}\)

	500

	strong



	config. A

	2D, slice-merged

	\(5.28 \times 10^{4}\)

	500

	strong



	config. A

	2.5D, direction-merged

	\(4.76 \times 10^{4}\)

	700

	strong



	config. A

	2.5D, merged

	\(4.77 \times 10^{4}\)

	700

	strong



	config. B

	2D, averaged

	\(2.94 \times 10^{4}\)

	\(1.4 \times 10^{3}\)

	strong



	config. B

	2D, slice-merged

	\(2.95 \times 10^{4}\)

	\(1.4 \times 10^{3}\)

	strong



	config. B

	2.5D, direction-merged

	\(2.52 \times 10^{4}\)

	\(1 \times 10^{3}\)

	strong



	config. B

	2.5D, merged

	\(2.53 \times 10^{4}\)

	\(1 \times 10^{3}\)

	strong



	config. C

	3D, averaged

	\(5.69 \times 10^{5}\)

	\(1.1 \times 10^{4}\)

	strong



	config. C

	3D, merged

	\(5.7 \times 10^{5}\)

	\(1.1 \times 10^{4}\)

	very strong



	config. D

	3D, averaged

	\(3.57 \times 10^{4}\)

	\(1.4 \times 10^{3}\)

	strong



	config. D

	3D, merged

	\(3.57 \times 10^{4}\)

	\(1.5 \times 10^{3}\)

	very strong



	config. E

	3D, averaged

	\(6.89 \times 10^{4}\)

	\(2.1 \times 10^{3}\)

	moderate



	config. E

	3D, merged

	\(6.9 \times 10^{4}\)

	\(2.1 \times 10^{3}\)

	strong








Information correlation 1

R8DG
Information theoretic correlation is estimated using two different
measures [Haralick1973]. For symmetric
\(\mathbf{P}_{\Delta}\) the first measure is defined as:


\[F_{\mathit{cm.info.corr.1}}=\frac{\mathit{HXY}-\mathit{HXY_1}}{\mathit{HX}}\]

\(\mathit{HXY} = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{ij} \log_2 p_{ij}\)
is the entropy for the joint probability.
\(\mathit{HX}=-\sum_{i=1}^{N_g} p_{i.} \log_2 p_{i.}\) is the
entropy for the row marginal probability, which due to symmetry is equal
to the entropy of the column marginal probability.
\(\mathit{HXY}_1\) is a type of entropy that is defined as:


\[\mathit{HXY}_1 = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{ij} \log_2 \left(p_{i.} p_{.j}\right)\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	\(-\)0.155

	—

	very strong



	dig. phantom

	2D, slice-merged

	\(-\)0.0341

	—

	strong



	dig. phantom

	2.5D, direction-merged

	\(-\)0.124

	—

	strong



	dig. phantom

	2.5D, merged

	\(-\)0.0334

	—

	strong



	dig. phantom

	3D, averaged

	\(-\)0.157

	—

	very strong



	dig. phantom

	3D, merged

	\(-\)0.0288

	—

	very strong



	config. A

	2D, averaged

	\(-\)0.236

	0.001

	strong



	config. A

	2D, slice-merged

	\(-\)0.214

	0.001

	strong



	config. A

	2.5D, direction-merged

	\(-\)0.231

	0.001

	strong



	config. A

	2.5D, merged

	\(-\)0.228

	0.001

	strong



	config. B

	2D, averaged

	\(-\)0.239

	0.001

	strong



	config. B

	2D, slice-merged

	\(-\)0.181

	0.001

	strong



	config. B

	2.5D, direction-merged

	\(-\)0.188

	0.001

	strong



	config. B

	2.5D, merged

	\(-\)0.185

	0.001

	strong



	config. C

	3D, averaged

	\(-\)0.236

	0.001

	strong



	config. C

	3D, merged

	\(-\)0.228

	0.001

	very strong



	config. D

	3D, averaged

	\(-\)0.231

	0.003

	strong



	config. D

	3D, merged

	\(-\)0.225

	0.003

	strong



	config. E

	3D, averaged

	\(-\)0.181

	0.003

	moderate



	config. E

	3D, merged

	\(-\)0.175

	0.003

	strong








Information correlation 2

JN9H
The second measure of information theoretic correlation
[Haralick1973] is estimated as follows for symmetric
\(\mathbf{P}_{\Delta}\):


\[F_{\mathit{cm.info.corr.2}}=\sqrt{1-\exp\left(-2\left(\mathit{HXY}_2-\mathit{HXY}\right)\right)}\]

As earlier,
\(\mathit{HXY} = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{ij} \log_2 p_{ij}\).
\(\mathit{HXY}_2\) is a type of entropy defined as:


\[\mathit{HXY}_2=-\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_{i.} p_{.j} \log_2 \left(p_{i.} p_{.j} \right)\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.487

	—

	strong



	dig. phantom

	2D, slice-merged

	0.263

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.487

	—

	strong



	dig. phantom

	2.5D, merged

	0.291

	—

	strong



	dig. phantom

	3D, averaged

	0.52

	—

	very strong



	dig. phantom

	3D, merged

	0.269

	—

	very strong



	config. A

	2D, averaged

	0.863

	0.003

	strong



	config. A

	2D, slice-merged

	0.851

	0.002

	strong



	config. A

	2.5D, direction-merged

	0.879

	0.001

	strong



	config. A

	2.5D, merged

	0.88

	0.001

	strong



	config. B

	2D, averaged

	0.837

	0.001

	strong



	config. B

	2D, slice-merged

	0.792

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.821

	0.001

	strong



	config. B

	2.5D, merged

	0.819

	0.001

	strong



	config. C

	3D, averaged

	0.9

	0.001

	strong



	config. C

	3D, merged

	0.899

	0.001

	very strong



	config. D

	3D, averaged

	0.845

	0.003

	strong



	config. D

	3D, merged

	0.846

	0.003

	very strong



	config. E

	3D, averaged

	0.813

	0.004

	moderate



	config. E

	3D, merged

	0.813

	0.004

	strong









Grey level run length based features

TP0I
The grey level run length matrix (GLRLM) was introduced by
[Galloway1975] to define various texture features.
Like the grey level co-occurrence matrix, GLRLM also assesses the
distribution of discretised grey levels in an image or in a stack of
images. However, whereas GLCM assesses co-occurrence of grey levels
within neighbouring pixels or voxels, GLRLM assesses run lengths. A run
length is defined as the length of a consecutive sequence of pixels or
voxels with the same grey level along direction \(\mathbf{m}\),
which was previously defined in Grey level co-occurrence based features. The GLRLM
then contains the occurrences of runs with length \(j\) for a
discretised grey level \(i\).

A complete example for GLRLM construction from a 2D image is shown in Fig. 14.
Let \(\mathbf{M}_{\mathbf{m}}\)
be the \(N_g \times N_r\) grey level run length matrix, where
\(N_g\) is the number of discretised grey levels present in the ROI
intensity mask and \(N_r\) the maximal possible run length along
direction \(\mathbf{m}\). Matrix element \(r_{ij}\) of the GLRLM
is the occurrence of grev level \(i\) with run length \(j\).
Then, let \(N_v\) be the total number of voxels in the ROI intensity
mask, and \(N_s=\sum_{i=1}^{N_g}\sum_{j=1}^{N_r}r_{ij}\) the sum
over all elements in \(\mathbf{M}_{\mathbf{m}}\). Marginal sums are
also defined. Let \(r_{i.}\) be the marginal sum of the runs over
run lengths \(j\) for grey value \(i\), that is
\(r_{i.}=\sum_{j=1}^{N_r} r_{ij}\). Similarly, the marginal sum of
the runs over the grey values \(i\) for run length \(j\) is
\(r_{.j}=\sum_{i=1}^{N_g} r_{ij}\).


[image: _images/figGLRLM1.png]

Fig. 14 Grey level run length matrices for the 0◦ (a), 45◦ (b), 90◦ (c) and 135◦ (d) directions.
In vector notation these directions are \(\mathbf{m} = (1, 0)\), \(\mathbf{m} = (1, 1)\),
\(\mathbf{m} = (0, 1)\) and \(\mathbf{m} = (-1, 1)\), respectively.





Aggregating features

To improve rotational invariance, GLRLM feature values are computed by
aggregating information from the different underlying directional
matrices [Depeursinge2017a]. Five methods can be used
to aggregate GLRLMs and arrive at a single feature value. A schematic
example was previously shown Fig. 13. A feature may be aggregated as follows:


	Features are computed from each 2D directional matrix and averaged
over 2D directions and slices (BTW3).


	Features are computed from a single matrix after merging 2D
directional matrices per slice, and then averaged over slices
(SUJT).


	Features are computed from a single matrix after merging 2D
directional matrices per direction, and then averaged over directions
(JJUI).


	The feature is computed from a single matrix after merging all 2D
directional matrices (ZW7Z).


	Features are computed from each 3D directional matrix and averaged
over the 3D directions (ITBB).


	The feature is computed from a single matrix after merging all 3D
directional matrices (IAZD).




In methods 2,3,4 and 6 matrices are merged by summing the run counts of
each matrix element \((i,j)\) over the different matrices. Note that
when matrices are merged, \(N_v\) should likewise be summed to
retain consistency. Feature values may dependent strongly on the
aggregation method.



Distance weighting

GLRLMs may be weighted for distance by multiplying the run lengths with
a weighting factor \(w\). By default \(w=1\), but \(w\) may
also be an inverse distance function, e.g.
\(w=\|\mathbf{m}\|^{-1}\) or \(w=\exp(-\|\mathbf{m}\|^2)\)
[VanGriethuysen2017], with \(\|\mathbf{m}\|\)
the length of direction vector \(m\). Whether distance weighting
yields different feature values depends on several factors. When
aggregating the feature values, matrices have to be merged first,
otherwise weighting has no effect. It also has no effect if the
Chebyshev norm is used for weighting. Distance weighting is non-standard
use, and we caution against it due to potential reproducibility issues.








Short runs emphasis

22OV
This feature emphasises short run lengths
[Galloway1975]. It is defined as:


\[F_{\mathit{rlm.sre}} = \frac{1}{N_s} \sum_{j=1}^{N_r} \frac{r_{.j}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.641

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.661

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.665

	—

	strong



	dig. phantom

	2.5D, merged

	0.68

	—

	strong



	dig. phantom

	3D, averaged

	0.705

	—

	very strong



	dig. phantom

	3D, merged

	0.729

	—

	very strong



	config. A

	2D, averaged

	0.785

	0.003

	strong



	config. A

	2D, slice-merged

	0.786

	0.003

	strong



	config. A

	2.5D, direction-merged

	0.768

	0.003

	strong



	config. A

	2.5D, merged

	0.769

	0.003

	strong



	config. B

	2D, averaged

	0.781

	0.001

	strong



	config. B

	2D, slice-merged

	0.782

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.759

	0.001

	strong



	config. B

	2.5D, merged

	0.759

	0.001

	strong



	config. C

	3D, averaged

	0.786

	0.003

	strong



	config. C

	3D, merged

	0.787

	0.003

	strong



	config. D

	3D, averaged

	0.734

	0.001

	strong



	config. D

	3D, merged

	0.736

	0.001

	strong



	config. E

	3D, averaged

	0.776

	0.001

	moderate



	config. E

	3D, merged

	0.777

	0.001

	strong








Long runs emphasis

W4KF
This feature emphasises long run lengths
[Galloway1975]. It is defined as:


\[F_{\mathit{rlm.lre}} = \frac{1}{N_s} \sum_{j=1}^{N_r} j^2 r_{.j}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	3.78

	—

	very strong



	dig. phantom

	2D, slice-merged

	3.51

	—

	strong



	dig. phantom

	2.5D, direction-merged

	3.46

	—

	strong



	dig. phantom

	2.5D, merged

	3.27

	—

	strong



	dig. phantom

	3D, averaged

	3.06

	—

	very strong



	dig. phantom

	3D, merged

	2.76

	—

	very strong



	config. A

	2D, averaged

	2.91

	0.03

	strong



	config. A

	2D, slice-merged

	2.89

	0.03

	strong



	config. A

	2.5D, direction-merged

	3.09

	0.03

	strong



	config. A

	2.5D, merged

	3.08

	0.03

	strong



	config. B

	2D, averaged

	3.52

	0.04

	strong



	config. B

	2D, slice-merged

	3.5

	0.04

	strong



	config. B

	2.5D, direction-merged

	3.82

	0.05

	strong



	config. B

	2.5D, merged

	3.81

	0.05

	strong



	config. C

	3D, averaged

	3.31

	0.04

	strong



	config. C

	3D, merged

	3.28

	0.04

	strong



	config. D

	3D, averaged

	6.66

	0.18

	strong



	config. D

	3D, merged

	6.56

	0.18

	strong



	config. E

	3D, averaged

	3.55

	0.07

	strong



	config. E

	3D, merged

	3.52

	0.07

	strong








Low grey level run emphasis

V3SW
This feature is a grey level analogue to short runs emphasis
[Chu1990]. Instead of short run lengths, low grey
levels are emphasised. The feature is defined as:


\[F_{\mathit{rlm.lgre}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \frac{r_{i.}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.604

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.609

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.58

	—

	strong



	dig. phantom

	2.5D, merged

	0.585

	—

	strong



	dig. phantom

	3D, averaged

	0.603

	—

	very strong



	dig. phantom

	3D, merged

	0.607

	—

	very strong



	config. A

	2D, averaged

	0.0264

	0.0003

	strong



	config. A

	2D, slice-merged

	0.0264

	0.0003

	strong



	config. A

	2.5D, direction-merged

	0.0148

	0.0004

	strong



	config. A

	2.5D, merged

	0.0147

	0.0004

	strong



	config. B

	2D, averaged

	0.0331

	0.0006

	strong



	config. B

	2D, slice-merged

	0.033

	0.0006

	strong



	config. B

	2.5D, direction-merged

	0.0194

	0.0006

	strong



	config. B

	2.5D, merged

	0.0194

	0.0006

	strong



	config. C

	3D, averaged

	0.00155

	\(5 \times 10^{-5}\)

	strong



	config. C

	3D, merged

	0.00155

	\(5 \times 10^{-5}\)

	strong



	config. D

	3D, averaged

	0.0257

	0.0012

	strong



	config. D

	3D, merged

	0.0257

	0.0012

	strong



	config. E

	3D, averaged

	0.0204

	0.0008

	moderate



	config. E

	3D, merged

	0.0204

	0.0008

	strong








High grey level run emphasis

G3QZ
The high grey level run emphasis feature is a grey level analogue to
long runs emphasis [Chu1990]. The feature
emphasises high grey levels, and is defined as:


\[F_{\mathit{rlm.hgre}}=\frac{1}{N_s} \sum_{i=1}^{N_g} i^2 r_{i.}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	9.82

	—

	very strong



	dig. phantom

	2D, slice-merged

	9.74

	—

	strong



	dig. phantom

	2.5D, direction-merged

	10.3

	—

	strong



	dig. phantom

	2.5D, merged

	10.2

	—

	strong



	dig. phantom

	3D, averaged

	9.7

	—

	very strong



	dig. phantom

	3D, merged

	9.64

	—

	very strong



	config. A

	2D, averaged

	428

	3

	strong



	config. A

	2D, slice-merged

	428

	3

	strong



	config. A

	2.5D, direction-merged

	449

	3

	strong



	config. A

	2.5D, merged

	449

	3

	strong



	config. B

	2D, averaged

	342

	11

	strong



	config. B

	2D, slice-merged

	342

	11

	strong



	config. B

	2.5D, direction-merged

	356

	11

	strong



	config. B

	2.5D, merged

	356

	11

	strong



	config. C

	3D, averaged

	\(1.47 \times 10^{3}\)

	10

	strong



	config. C

	3D, merged

	\(1.47 \times 10^{3}\)

	10

	strong



	config. D

	3D, averaged

	326

	17

	strong



	config. D

	3D, merged

	326

	17

	strong



	config. E

	3D, averaged

	471

	9

	strong



	config. E

	3D, merged

	471

	9

	strong








Short run low grey level emphasis

HTZT
This feature emphasises runs in the upper left quadrant of the GLRLM,
where short run lengths and low grey levels are located
[Dasarathy1991]. It is defined as:


\[F_{\mathit{rlm.srlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{r_{ij}}{i^2 j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.294

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.311

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.296

	—

	strong



	dig. phantom

	2.5D, merged

	0.312

	—

	strong



	dig. phantom

	3D, averaged

	0.352

	—

	very strong



	dig. phantom

	3D, merged

	0.372

	—

	very strong



	config. A

	2D, averaged

	0.0243

	0.0003

	strong



	config. A

	2D, slice-merged

	0.0243

	0.0003

	strong



	config. A

	2.5D, direction-merged

	0.0135

	0.0004

	strong



	config. A

	2.5D, merged

	0.0135

	0.0004

	strong



	config. B

	2D, averaged

	0.0314

	0.0006

	strong



	config. B

	2D, slice-merged

	0.0313

	0.0006

	strong



	config. B

	2.5D, direction-merged

	0.0181

	0.0006

	strong



	config. B

	2.5D, merged

	0.0181

	0.0006

	strong



	config. C

	3D, averaged

	0.00136

	\(5 \times 10^{-5}\)

	strong



	config. C

	3D, merged

	0.00136

	\(5 \times 10^{-5}\)

	strong



	config. D

	3D, averaged

	0.0232

	0.001

	strong



	config. D

	3D, merged

	0.0232

	0.001

	strong



	config. E

	3D, averaged

	0.0187

	0.0007

	moderate



	config. E

	3D, merged

	0.0186

	0.0007

	strong








Short run high grey level emphasis

GD3A
This feature emphasises runs in the lower left quadrant of the GLRLM,
where short run lengths and high grey levels are located
[Dasarathy1991]. The feature is defined as:


\[F_{\mathit{rlm.srhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{i^2 r_{ij}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	8.57

	—

	very strong



	dig. phantom

	2D, slice-merged

	8.67

	—

	strong



	dig. phantom

	2.5D, direction-merged

	9.03

	—

	strong



	dig. phantom

	2.5D, merged

	9.05

	—

	strong



	dig. phantom

	3D, averaged

	8.54

	—

	very strong



	dig. phantom

	3D, merged

	8.67

	—

	very strong



	config. A

	2D, averaged

	320

	1

	strong



	config. A

	2D, slice-merged

	320

	1

	strong



	config. A

	2.5D, direction-merged

	332

	1

	strong



	config. A

	2.5D, merged

	333

	1

	strong



	config. B

	2D, averaged

	251

	8

	strong



	config. B

	2D, slice-merged

	252

	8

	strong



	config. B

	2.5D, direction-merged

	257

	9

	strong



	config. B

	2.5D, merged

	258

	9

	strong



	config. C

	3D, averaged

	\(1.1 \times 10^{3}\)

	10

	strong



	config. C

	3D, merged

	\(1.1 \times 10^{3}\)

	10

	strong



	config. D

	3D, averaged

	219

	13

	strong



	config. D

	3D, merged

	219

	13

	strong



	config. E

	3D, averaged

	346

	7

	strong



	config. E

	3D, merged

	347

	7

	strong








Long run low grey level emphasis

IVPO
This feature emphasises runs in the upper right quadrant of the GLRLM,
where long run lengths and low grey levels are located
[Dasarathy1991]. The feature is defined as:


\[F_{\mathit{rlm.lrlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{j^2 r_{ij}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	3.14

	—

	very strong



	dig. phantom

	2D, slice-merged

	2.92

	—

	strong



	dig. phantom

	2.5D, direction-merged

	2.79

	—

	strong



	dig. phantom

	2.5D, merged

	2.63

	—

	strong



	dig. phantom

	3D, averaged

	2.39

	—

	very strong



	dig. phantom

	3D, merged

	2.16

	—

	very strong



	config. A

	2D, averaged

	0.0386

	0.0003

	strong



	config. A

	2D, slice-merged

	0.0385

	0.0003

	strong



	config. A

	2.5D, direction-merged

	0.0229

	0.0004

	strong



	config. A

	2.5D, merged

	0.0228

	0.0004

	strong



	config. B

	2D, averaged

	0.0443

	0.0008

	strong



	config. B

	2D, slice-merged

	0.0442

	0.0008

	strong



	config. B

	2.5D, direction-merged

	0.0293

	0.0009

	strong



	config. B

	2.5D, merged

	0.0292

	0.0009

	strong



	config. C

	3D, averaged

	0.00317

	\(4 \times 10^{-5}\)

	strong



	config. C

	3D, merged

	0.00314

	\(4 \times 10^{-5}\)

	strong



	config. D

	3D, averaged

	0.0484

	0.0031

	strong



	config. D

	3D, merged

	0.0478

	0.0031

	strong



	config. E

	3D, averaged

	0.0313

	0.0016

	moderate



	config. E

	3D, merged

	0.0311

	0.0016

	strong








Long run high grey level emphasis

3KUM
This feature emphasises runs in the lower right quadrant of the GLRLM,
where long run lengths and high grey levels are located
[Dasarathy1991]. The feature is defined as:


\[F_{\mathit{rlm.lrhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} i^2 j^2 r_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	17.4

	—

	very strong



	dig. phantom

	2D, slice-merged

	16.1

	—

	strong



	dig. phantom

	2.5D, direction-merged

	17.9

	—

	strong



	dig. phantom

	2.5D, merged

	17

	—

	strong



	dig. phantom

	3D, averaged

	17.6

	—

	very strong



	dig. phantom

	3D, merged

	15.6

	—

	very strong



	config. A

	2D, averaged

	\(1.41 \times 10^{3}\)

	20

	strong



	config. A

	2D, slice-merged

	\(1.4 \times 10^{3}\)

	20

	strong



	config. A

	2.5D, direction-merged

	\(1.5 \times 10^{3}\)

	20

	strong



	config. A

	2.5D, merged

	\(1.5 \times 10^{3}\)

	20

	strong



	config. B

	2D, averaged

	\(1.39 \times 10^{3}\)

	30

	strong



	config. B

	2D, slice-merged

	\(1.38 \times 10^{3}\)

	30

	strong



	config. B

	2.5D, direction-merged

	\(1.5 \times 10^{3}\)

	30

	strong



	config. B

	2.5D, merged

	\(1.5 \times 10^{3}\)

	30

	strong



	config. C

	3D, averaged

	\(5.59 \times 10^{3}\)

	80

	strong



	config. C

	3D, merged

	\(5.53 \times 10^{3}\)

	80

	strong



	config. D

	3D, averaged

	\(2.67 \times 10^{3}\)

	30

	strong



	config. D

	3D, merged

	\(2.63 \times 10^{3}\)

	30

	strong



	config. E

	3D, averaged

	\(1.9 \times 10^{3}\)

	20

	moderate



	config. E

	3D, merged

	\(1.89 \times 10^{3}\)

	20

	strong








Grey level non-uniformity

R5YN
This feature assesses the distribution of runs over the grey values
[Galloway1975]. The feature value is low when runs
are equally distributed along grey levels. The feature is defined as:


\[F_{\mathit{rlm.glnu}}= \frac{1}{N_s} \sum_{i=1}^{N_g} r_{i.}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	5.2

	—

	very strong



	dig. phantom

	2D, slice-merged

	20.5

	—

	strong



	dig. phantom

	2.5D, direction-merged

	19.5

	—

	strong



	dig. phantom

	2.5D, merged

	77.1

	—

	strong



	dig. phantom

	3D, averaged

	21.8

	—

	very strong



	dig. phantom

	3D, merged

	281

	—

	very strong



	config. A

	2D, averaged

	432

	1

	strong



	config. A

	2D, slice-merged

	\(1.73 \times 10^{3}\)

	10

	strong



	config. A

	2.5D, direction-merged

	\(9.85 \times 10^{3}\)

	10

	strong



	config. A

	2.5D, merged

	\(3.94 \times 10^{4}\)

	100

	strong



	config. B

	2D, averaged

	107

	1

	strong



	config. B

	2D, slice-merged

	427

	1

	strong



	config. B

	2.5D, direction-merged

	\(2.4 \times 10^{3}\)

	10

	strong



	config. B

	2.5D, merged

	\(9.6 \times 10^{3}\)

	20

	strong



	config. C

	3D, averaged

	\(3.18 \times 10^{3}\)

	10

	strong



	config. C

	3D, merged

	\(4.13 \times 10^{4}\)

	100

	strong



	config. D

	3D, averaged

	\(3.29 \times 10^{3}\)

	10

	strong



	config. D

	3D, merged

	\(4.28 \times 10^{4}\)

	200

	strong



	config. E

	3D, averaged

	\(4 \times 10^{3}\)

	10

	moderate



	config. E

	3D, merged

	\(5.19 \times 10^{4}\)

	200

	strong








Normalised grey level non-uniformity

OVBL
This is a normalised version of the grey level non-uniformity feature.
It is defined as:


\[F_{\mathit{rlm.glnu.norm}}= \frac{1}{N_s^2} \sum_{i=1}^{N_g} r_{i.}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.46

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.456

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.413

	—

	strong



	dig. phantom

	2.5D, merged

	0.412

	—

	strong



	dig. phantom

	3D, averaged

	0.43

	—

	very strong



	dig. phantom

	3D, merged

	0.43

	—

	very strong



	config. A

	2D, averaged

	0.128

	0.003

	strong



	config. A

	2D, slice-merged

	0.128

	0.003

	strong



	config. A

	2.5D, direction-merged

	0.126

	0.003

	strong



	config. A

	2.5D, merged

	0.126

	0.003

	strong



	config. B

	2D, averaged

	0.145

	0.001

	strong



	config. B

	2D, slice-merged

	0.145

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.137

	0.001

	strong



	config. B

	2.5D, merged

	0.137

	0.001

	strong



	config. C

	3D, averaged

	0.102

	0.003

	strong



	config. C

	3D, merged

	0.102

	0.003

	very strong



	config. D

	3D, averaged

	0.133

	0.002

	strong



	config. D

	3D, merged

	0.134

	0.002

	strong



	config. E

	3D, averaged

	0.135

	0.003

	strong



	config. E

	3D, merged

	0.135

	0.003

	strong








Run length non-uniformity

W92Y
This features assesses the distribution of runs over the run lengths
[Galloway1975]. The feature value is low when runs
are equally distributed along run lengths. It is defined as:


\[F_{\mathit{rlm.rlnu}}= \frac{1}{N_s} \sum_{j=1}^{N_r} r_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	6.12

	—

	very strong



	dig. phantom

	2D, slice-merged

	21.6

	—

	strong



	dig. phantom

	2.5D, direction-merged

	22.3

	—

	strong



	dig. phantom

	2.5D, merged

	83.2

	—

	strong



	dig. phantom

	3D, averaged

	26.9

	—

	very strong



	dig. phantom

	3D, merged

	328

	—

	very strong



	config. A

	2D, averaged

	\(1.65 \times 10^{3}\)

	10

	strong



	config. A

	2D, slice-merged

	\(6.6 \times 10^{3}\)

	30

	strong



	config. A

	2.5D, direction-merged

	\(4.27 \times 10^{4}\)

	200

	strong



	config. A

	2.5D, merged

	\(1.71 \times 10^{5}\)

	\(1 \times 10^{3}\)

	strong



	config. B

	2D, averaged

	365

	3

	strong



	config. B

	2D, slice-merged

	\(1.46 \times 10^{3}\)

	10

	strong



	config. B

	2.5D, direction-merged

	\(9.38 \times 10^{3}\)

	70

	strong



	config. B

	2.5D, merged

	\(3.75 \times 10^{4}\)

	300

	strong



	config. C

	3D, averaged

	\(1.8 \times 10^{4}\)

	500

	strong



	config. C

	3D, merged

	\(2.34 \times 10^{5}\)

	\(6 \times 10^{3}\)

	strong



	config. D

	3D, averaged

	\(1.24 \times 10^{4}\)

	200

	strong



	config. D

	3D, merged

	\(1.6 \times 10^{5}\)

	\(3 \times 10^{3}\)

	strong



	config. E

	3D, averaged

	\(1.66 \times 10^{4}\)

	300

	strong



	config. E

	3D, merged

	\(2.15 \times 10^{5}\)

	\(4 \times 10^{3}\)

	strong








Normalised run length non-uniformity

IC23
This is normalised version of the run length non-uniformity feature.
It is defined as:


\[F_{\mathit{rlm.rlnu.norm}}= \frac{1}{N_s^2} \sum_{j=1}^{N_r} r_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.492

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.441

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.461

	—

	strong



	dig. phantom

	2.5D, merged

	0.445

	—

	strong



	dig. phantom

	3D, averaged

	0.513

	—

	very strong



	dig. phantom

	3D, merged

	0.501

	—

	very strong



	config. A

	2D, averaged

	0.579

	0.003

	strong



	config. A

	2D, slice-merged

	0.579

	0.003

	strong



	config. A

	2.5D, direction-merged

	0.548

	0.003

	strong



	config. A

	2.5D, merged

	0.548

	0.003

	strong



	config. B

	2D, averaged

	0.578

	0.001

	strong



	config. B

	2D, slice-merged

	0.578

	0.001

	strong



	config. B

	2.5D, direction-merged

	0.533

	0.001

	strong



	config. B

	2.5D, merged

	0.534

	0.001

	strong



	config. C

	3D, averaged

	0.574

	0.004

	strong



	config. C

	3D, merged

	0.575

	0.004

	strong



	config. D

	3D, averaged

	0.5

	0.001

	strong



	config. D

	3D, merged

	0.501

	0.001

	strong



	config. E

	3D, averaged

	0.559

	0.001

	moderate



	config. E

	3D, merged

	0.56

	0.001

	strong








Run percentage

9ZK5
This feature measures the fraction of the number of realised runs and
the maximum number of potential runs [Galloway1975].
Strongly linear or highly uniform ROI volumes produce a low run
percentage. It is defined as:


\[F_{\mathit{rlm.r.perc}}=\frac{N_s}{N_v}\]

As noted before, when this feature is calculated using a merged GLRLM,
\(N_v\) should be the sum of the number of voxels of the underlying
matrices to allow proper normalisation.










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.627

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.627

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.632

	—

	strong



	dig. phantom

	2.5D, merged

	0.632

	—

	strong



	dig. phantom

	3D, averaged

	0.68

	—

	very strong



	dig. phantom

	3D, merged

	0.68

	—

	very strong



	config. A

	2D, averaged

	0.704

	0.003

	strong



	config. A

	2D, slice-merged

	0.704

	0.003

	strong



	config. A

	2.5D, direction-merged

	0.68

	0.003

	strong



	config. A

	2.5D, merged

	0.68

	0.003

	strong



	config. B

	2D, averaged

	0.681

	0.002

	strong



	config. B

	2D, slice-merged

	0.681

	0.002

	strong



	config. B

	2.5D, direction-merged

	0.642

	0.002

	strong



	config. B

	2.5D, merged

	0.642

	0.002

	strong



	config. C

	3D, averaged

	0.679

	0.003

	strong



	config. C

	3D, merged

	0.679

	0.003

	strong



	config. D

	3D, averaged

	0.554

	0.005

	strong



	config. D

	3D, merged

	0.554

	0.005

	strong



	config. E

	3D, averaged

	0.664

	0.003

	moderate



	config. E

	3D, merged

	0.664

	0.003

	strong








Grey level variance

8CE5
This feature estimates the variance in runs over the grey levels. Let
\(p_{ij} = r_{ij}/N_s\) be the joint probability estimate for
finding discretised grey level \(i\) with run length \(j\).
Grey level variance is then defined as:


\[F_{\mathit{rlm.gl.var}}=  \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} (i-\mu)^2 p_{ij}\]

Here, \(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} i\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	3.35

	—

	very strong



	dig. phantom

	2D, slice-merged

	3.37

	—

	strong



	dig. phantom

	2.5D, direction-merged

	3.58

	—

	strong



	dig. phantom

	2.5D, merged

	3.59

	—

	strong



	dig. phantom

	3D, averaged

	3.46

	—

	very strong



	dig. phantom

	3D, merged

	3.48

	—

	very strong



	config. A

	2D, averaged

	33.7

	0.6

	strong



	config. A

	2D, slice-merged

	33.7

	0.6

	strong



	config. A

	2.5D, direction-merged

	29.1

	0.6

	strong



	config. A

	2.5D, merged

	29.1

	0.6

	strong



	config. B

	2D, averaged

	28.3

	0.3

	strong



	config. B

	2D, slice-merged

	28.3

	0.3

	strong



	config. B

	2.5D, direction-merged

	25.7

	0.2

	strong



	config. B

	2.5D, merged

	25.7

	0.2

	strong



	config. C

	3D, averaged

	101

	3

	strong



	config. C

	3D, merged

	101

	3

	very strong



	config. D

	3D, averaged

	31.5

	0.4

	strong



	config. D

	3D, merged

	31.4

	0.4

	strong



	config. E

	3D, averaged

	39.8

	0.9

	moderate



	config. E

	3D, merged

	39.7

	0.9

	strong








Run length variance

SXLW
This feature estimates the variance in runs over the run lengths. As
before let \(p_{ij} = r_{ij}/N_s\). The feature is defined as:


\[F_{\mathit{rlm.rl.var}}= \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} (j-\mu)^2 p_{ij}\]

Mean run length is defined as
\(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} j\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	0.761

	—

	very strong



	dig. phantom

	2D, slice-merged

	0.778

	—

	strong



	dig. phantom

	2.5D, direction-merged

	0.758

	—

	strong



	dig. phantom

	2.5D, merged

	0.767

	—

	strong



	dig. phantom

	3D, averaged

	0.574

	—

	very strong



	dig. phantom

	3D, merged

	0.598

	—

	very strong



	config. A

	2D, averaged

	0.828

	0.008

	strong



	config. A

	2D, slice-merged

	0.826

	0.008

	strong



	config. A

	2.5D, direction-merged

	0.916

	0.011

	strong



	config. A

	2.5D, merged

	0.914

	0.011

	strong



	config. B

	2D, averaged

	1.22

	0.03

	strong



	config. B

	2D, slice-merged

	1.21

	0.03

	strong



	config. B

	2.5D, direction-merged

	1.39

	0.03

	strong



	config. B

	2.5D, merged

	1.39

	0.03

	strong



	config. C

	3D, averaged

	1.12

	0.02

	strong



	config. C

	3D, merged

	1.11

	0.02

	strong



	config. D

	3D, averaged

	3.35

	0.14

	strong



	config. D

	3D, merged

	3.29

	0.13

	strong



	config. E

	3D, averaged

	1.26

	0.05

	strong



	config. E

	3D, merged

	1.25

	0.05

	strong








Run entropy

HJ9O
Run entropy was investigated by [Albregtsen2000].
Again, let \(p_{ij} = r_{ij}/N_s\). The entropy is then defined as:


\[F_{\mathit{rlm.rl.entr}} = - \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p_{ij} \log_2 p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D, averaged

	2.17

	—

	very strong



	dig. phantom

	2D, slice-merged

	2.57

	—

	strong



	dig. phantom

	2.5D, direction-merged

	2.52

	—

	strong



	dig. phantom

	2.5D, merged

	2.76

	—

	strong



	dig. phantom

	3D, averaged

	2.43

	—

	very strong



	dig. phantom

	3D, merged

	2.62

	—

	very strong



	config. A

	2D, averaged

	4.73

	0.02

	strong



	config. A

	2D, slice-merged

	4.76

	0.02

	strong



	config. A

	2.5D, direction-merged

	4.87

	0.01

	strong



	config. A

	2.5D, merged

	4.87

	0.01

	strong



	config. B

	2D, averaged

	4.53

	0.02

	strong



	config. B

	2D, slice-merged

	4.58

	0.01

	strong



	config. B

	2.5D, direction-merged

	4.84

	0.01

	strong



	config. B

	2.5D, merged

	4.84

	0.01

	strong



	config. C

	3D, averaged

	5.35

	0.03

	strong



	config. C

	3D, merged

	5.35

	0.03

	very strong



	config. D

	3D, averaged

	5.08

	0.02

	strong



	config. D

	3D, merged

	5.08

	0.02

	very strong



	config. E

	3D, averaged

	4.87

	0.03

	strong



	config. E

	3D, merged

	4.87

	0.03

	strong









Grey level size zone based features

9SAK
The grey level size zone matrix (GLSZM) counts the number of groups (or
zones) of linked voxels [Thibault2014]. Voxels are
linked if the neighbouring voxel has an identical discretised grey
level. Whether a voxel classifies as a neighbour depends on its
connectedness. In a 3D approach to texture analysis we consider
26-connectedness, which indicates that a center voxel is linked to all
of the 26 neighbouring voxels with the same grey level. In the 2
dimensional approach, 8-connectedness is used. A potential issue for the
2D approach is that voxels which may otherwise be considered to belong
to the same zone by linking across slices, are now two or more separate
zones within the slice plane. Whether this issue negatively affects
predictive performance of GLSZM-based features or their reproducibility
has not been determined.

Let \(\mathbf{M}\) be the \(N_g \times N_z\) grey level size
zone matrix, where \(N_g\) is the number of discretised grey levels
present in the ROI intensity mask and \(N_z\) the maximum zone size
of any group of linked voxels. Element \(s_{ij}\) of
\(\mathbf{M}\) is then the number of zones with discretised grey
level \(i\) and size \(j\). Furthermore, let \(N_v\) be the
number of voxels in the intensity mask and
\(N_s=\sum_{i=1}^{N_g}\sum_{j=1}^{N_z}s_{ij}\) be the total number
of zones. Marginal sums can likewise be defined. Let
\(s_{i.}=\sum_{j=1}^{N_z}s_{ij}\) be the number of zones with
discretised grey level \(i\), regardless of size. Likewise, let
\(s_{.j}=\sum_{i=1}^{N_g}s_{ij}\) be the number of zones with size
\(j\), regardless of grey level. A two dimensional example is shown
in Fig. 15.


[image: _images/figGLSZM1.png]

Fig. 15 Original image with grey levels (a); and corresponding grey level size zone matrix (GLSZM) under 8-connectedness
(b). Element \(s_{i,j}\) of the GLSZM indicates the number of times a zone of \(j\) linked pixels
and grey level \(i\) occurs within the image.





Aggregating features

Three methods can be used to aggregate GLSZMs and arrive at a single
feature value. A schematic example is shown in
Fig. 16. A feature may be aggregated as follows:


	Features are computed from 2D matrices and averaged over slices
(8QNN).


	The feature is computed from a single matrix after merging all 2D
matrices (62GR).


	The feature is computed from a 3D matrix (KOBO).




Method 2 involves merging GLSZMs by summing the number of zones
\(s_{ij}\) over the GLSZM for the different slices. Note that when
matrices are merged, \(N_v\) should likewise be summed to retain
consistency. Feature values may dependent strongly on the aggregation
method.


[image: _images/figGLSZMCalcApproaches.png]

Fig. 16 Approaches to calculating grey level size zone matrix-based features.
\(\mathbf{M}_{k}\) are texture matrices calculated for slice \(k\) (if applicable), and \(f_{k}\) is the corresponding feature value.
In (b) the matrices from the different slices are merged prior to feature calculation.





Distances

The default neighbourhood for GLSZM is constructed using Chebyshev
distance \(\delta=1\). Manhattan or Euclidean norms may also be used
to construct a neighbourhood, and both lead to a 6-connected (3D) and
4-connected (2D) neighbourhoods. Larger distances are also technically
possible, but will occasionally cause separate zones with the same
intensity to be considered as belonging to the same zone. Using
different neighbourhoods for determining voxel linkage is non-standard
use, and we caution against it due to potential reproducibility issues.



Note on feature references

GLSZM feature definitions are based on the definitions of GLRLM features
[Thibault2014]. Hence, references may be found in the
section on GLRLM (Grey level run length based features).


Small zone emphasis

This feature emphasises small zones. It is defined as:


\[F_{\mathit{szm.sze}} = \frac{1}{N_s} \sum_{j=1}^{N_z} \frac{s_{.j}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.363

	—

	strong



	dig. phantom

	2.5D

	0.368

	—

	strong



	dig. phantom

	3D

	0.255

	—

	very strong



	config. A

	2D

	0.688

	0.003

	strong



	config. A

	2.5D

	0.68

	0.003

	strong



	config. B

	2D

	0.745

	0.003

	strong



	config. B

	2.5D

	0.741

	0.003

	strong



	config. C

	3D

	0.695

	0.001

	strong



	config. D

	3D

	0.637

	0.005

	strong



	config. E

	3D

	0.676

	0.003

	strong








Large zone emphasis

48P8
This feature emphasises large zones. It is defined as:


\[F_{\mathit{szm.lze}} = \frac{1}{N_s} \sum_{j=1}^{N_z} j^2 s_{.j}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	43.9

	—

	strong



	dig. phantom

	2.5D

	34.2

	—

	strong



	dig. phantom

	3D

	550

	—

	very strong



	config. A

	2D

	625

	9

	strong



	config. A

	2.5D

	675

	8

	strong



	config. B

	2D

	439

	8

	strong



	config. B

	2.5D

	444

	8

	strong



	config. C

	3D

	\(3.89 \times 10^{4}\)

	900

	strong



	config. D

	3D

	\(9.91 \times 10^{4}\)

	\(2.8 \times 10^{3}\)

	strong



	config. E

	3D

	\(5.86 \times 10^{4}\)

	800

	strong








Low grey level zone emphasis

XMSY
This feature is a grey level analogue to small zone emphasis. Instead
of small zone sizes, low grey levels are emphasised. The feature is
defined as:


\[F_{\mathit{szm.lgze}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \frac{s_{i.}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.371

	—

	strong



	dig. phantom

	2.5D

	0.368

	—

	strong



	dig. phantom

	3D

	0.253

	—

	very strong



	config. A

	2D

	0.0368

	0.0005

	strong



	config. A

	2.5D

	0.0291

	0.0005

	strong



	config. B

	2D

	0.0475

	0.001

	strong



	config. B

	2.5D

	0.0387

	0.001

	strong



	config. C

	3D

	0.00235

	\(6 \times 10^{-5}\)

	strong



	config. D

	3D

	0.0409

	0.0005

	strong



	config. E

	3D

	0.034

	0.0004

	strong








High grey level zone emphasis

5GN9
The high grey level zone emphasis feature is a grey level analogue to
large zone emphasis. The feature emphasises high grey levels, and is
defined as:


\[F_{\mathit{szm.hgze}}=\frac{1}{N_s} \sum_{i=1}^{N_g} i^2 s_{i.}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	16.4

	—

	strong



	dig. phantom

	2.5D

	16.2

	—

	strong



	dig. phantom

	3D

	15.6

	—

	very strong



	config. A

	2D

	363

	3

	strong



	config. A

	2.5D

	370

	3

	strong



	config. B

	2D

	284

	11

	strong



	config. B

	2.5D

	284

	11

	strong



	config. C

	3D

	971

	7

	strong



	config. D

	3D

	188

	10

	strong



	config. E

	3D

	286

	6

	strong








Small zone low grey level emphasis

5RAI
This feature emphasises zone counts within the upper left quadrant of
the GLSZM, where small zone sizes and low grey levels are located. It is
defined as:


\[F_{\mathit{szm.szlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} \frac{s_{ij}}{i^2 j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.0259

	—

	strong



	dig. phantom

	2.5D

	0.0295

	—

	strong



	dig. phantom

	3D

	0.0256

	—

	very strong



	config. A

	2D

	0.0298

	0.0005

	strong



	config. A

	2.5D

	0.0237

	0.0005

	strong



	config. B

	2D

	0.0415

	0.0008

	strong



	config. B

	2.5D

	0.0335

	0.0009

	strong



	config. C

	3D

	0.0016

	\(4 \times 10^{-5}\)

	strong



	config. D

	3D

	0.0248

	0.0004

	strong



	config. E

	3D

	0.0224

	0.0004

	strong








Small zone high grey level emphasis

HW1V
This feature emphasises zone counts in the lower left quadrant of the
GLSZM, where small zone sizes and high grey levels are located. The
feature is defined as:


\[F_{\mathit{szm.szhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} \frac{i^2 s_{ij}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	10.3

	—

	strong



	dig. phantom

	2.5D

	9.87

	—

	strong



	dig. phantom

	3D

	2.76

	—

	very strong



	config. A

	2D

	226

	1

	strong



	config. A

	2.5D

	229

	1

	strong



	config. B

	2D

	190

	7

	strong



	config. B

	2.5D

	190

	7

	strong



	config. C

	3D

	657

	4

	strong



	config. D

	3D

	117

	7

	strong



	config. E

	3D

	186

	4

	strong








Large zone low grey level emphasis

YH51
This feature emphasises zone counts in the upper right quadrant of the
GLSZM, where large zone sizes and low grey levels are located. The
feature is defined as:


\[F_{\mathit{szm.lzlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} \frac{j^2 s_{ij}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	40.4

	—

	strong



	dig. phantom

	2.5D

	30.6

	—

	strong



	dig. phantom

	3D

	503

	—

	very strong



	config. A

	2D

	1.35

	0.03

	strong



	config. A

	2.5D

	1.44

	0.02

	strong



	config. B

	2D

	1.15

	0.04

	strong



	config. B

	2.5D

	1.16

	0.04

	strong



	config. C

	3D

	21.6

	0.5

	strong



	config. D

	3D

	241

	14

	strong



	config. E

	3D

	105

	4

	strong








Large zone high grey level emphasis

J17V
This feature emphasises zone counts in the lower right quadrant of the
GLSZM, where large zone sizes and high grey levels are located. The
feature is defined as:


\[F_{\mathit{szm.lzhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} i^2 j^2 s_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	113

	—

	strong



	dig. phantom

	2.5D

	107

	—

	strong



	dig. phantom

	3D

	\(1.49 \times 10^{3}\)

	—

	very strong



	config. A

	2D

	\(3.16 \times 10^{5}\)

	\(5 \times 10^{3}\)

	strong



	config. A

	2.5D

	\(3.38 \times 10^{5}\)

	\(5 \times 10^{3}\)

	strong



	config. B

	2D

	\(1.81 \times 10^{5}\)

	\(3 \times 10^{3}\)

	strong



	config. B

	2.5D

	\(1.81 \times 10^{5}\)

	\(3 \times 10^{3}\)

	strong



	config. C

	3D

	\(7.07 \times 10^{7}\)

	\(1.5 \times 10^{6}\)

	strong



	config. D

	3D

	\(4.14 \times 10^{7}\)

	\(3 \times 10^{5}\)

	strong



	config. E

	3D

	\(3.36 \times 10^{7}\)

	\(3 \times 10^{5}\)

	strong








Grey level non-uniformity

JNSA
This feature assesses the distribution of zone counts over the grey
values. The feature value is low when zone counts are equally
distributed along grey levels. The feature is defined as:


\[F_{\mathit{szm.glnu}}= \frac{1}{N_s} \sum_{i=1}^{N_g} s_{i.}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	1.41

	—

	strong



	dig. phantom

	2.5D

	5.44

	—

	strong



	dig. phantom

	3D

	1.4

	—

	very strong



	config. A

	2D

	82.2

	0.1

	strong



	config. A

	2.5D

	\(1.8 \times 10^{3}\)

	10

	strong



	config. B

	2D

	20.5

	0.1

	strong



	config. B

	2.5D

	437

	3

	strong



	config. C

	3D

	195

	6

	strong



	config. D

	3D

	212

	6

	very strong



	config. E

	3D

	231

	6

	strong








Normalised grey level non-uniformity

Y1RO
This is a normalised version of the grey level non-uniformity feature.
It is defined as:


\[F_{\mathit{szm.glnu.norm}}= \frac{1}{N_s^2} \sum_{i=1}^{N_g} s_{i.}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.323

	—

	strong



	dig. phantom

	2.5D

	0.302

	—

	strong



	dig. phantom

	3D

	0.28

	—

	very strong



	config. A

	2D

	0.0728

	0.0014

	strong



	config. A

	2.5D

	0.0622

	0.0007

	strong



	config. B

	2D

	0.0789

	0.001

	strong



	config. B

	2.5D

	0.0613

	0.0005

	strong



	config. C

	3D

	0.0286

	0.0003

	strong



	config. D

	3D

	0.0491

	0.0008

	strong



	config. E

	3D

	0.0414

	0.0003

	strong








Zone size non-uniformity

4JP3
This features assesses the distribution of zone counts over the
different zone sizes. Zone size non-uniformity is low when zone counts
are equally distributed along zone sizes. It is defined as:


\[F_{\mathit{szm.zsnu}}= \frac{1}{N_s} \sum_{j=1}^{N_z} s_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	1.49

	—

	strong



	dig. phantom

	2.5D

	3.44

	—

	strong



	dig. phantom

	3D

	1

	—

	very strong



	config. A

	2D

	479

	4

	strong



	config. A

	2.5D

	\(1.24 \times 10^{4}\)

	100

	strong



	config. B

	2D

	140

	3

	strong



	config. B

	2.5D

	\(3.63 \times 10^{3}\)

	70

	strong



	config. C

	3D

	\(3.04 \times 10^{3}\)

	100

	strong



	config. D

	3D

	\(1.63 \times 10^{3}\)

	10

	strong



	config. E

	3D

	\(2.37 \times 10^{3}\)

	40

	strong








Normalised zone size non-uniformity

VB3A
This is a normalised version of zone size non-uniformity. It is
defined as:


\[F_{\mathit{szm.zsnu.norm}}= \frac{1}{N_s^2} \sum_{i=1}^{N_z} s_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.333

	—

	strong



	dig. phantom

	2.5D

	0.191

	—

	strong



	dig. phantom

	3D

	0.2

	—

	very strong



	config. A

	2D

	0.44

	0.004

	strong



	config. A

	2.5D

	0.427

	0.004

	strong



	config. B

	2D

	0.521

	0.004

	strong



	config. B

	2.5D

	0.509

	0.004

	strong



	config. C

	3D

	0.447

	0.001

	strong



	config. D

	3D

	0.377

	0.006

	strong



	config. E

	3D

	0.424

	0.004

	strong








Zone percentage

P30P
This feature measures the fraction of the number of realised zones and
the maximum number of potential zones. Highly uniform ROIs produce a low
zone percentage. It is defined as:


\[F_{\mathit{szm.z.perc}}=\frac{N_s}{N_v}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.24

	—

	strong



	dig. phantom

	2.5D

	0.243

	—

	strong



	dig. phantom

	3D

	0.0676

	—

	very strong



	config. A

	2D

	0.3

	0.003

	strong



	config. A

	2.5D

	0.253

	0.004

	strong



	config. B

	2D

	0.324

	0.001

	strong



	config. B

	2.5D

	0.26

	0.002

	strong



	config. C

	3D

	0.148

	0.003

	strong



	config. D

	3D

	0.0972

	0.0007

	strong



	config. E

	3D

	0.126

	0.001

	strong








Grey level variance

BYLV
This feature estimates the variance in zone counts over the grey levels.
Let \(p_{ij} = s_{ij}/N_s\) be the joint probability estimate for
finding zones with discretised grey level \(i\) and size \(j\).
The feature is then defined as:


\[F_{\mathit{szm.gl.var}}=  \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} (i-\mu)^2 p_{ij}\]

Here, \(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} i\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	3.97

	—

	strong



	dig. phantom

	2.5D

	3.92

	—

	strong



	dig. phantom

	3D

	2.64

	—

	very strong



	config. A

	2D

	42.7

	0.7

	strong



	config. A

	2.5D

	47.9

	0.4

	strong



	config. B

	2D

	36.1

	0.3

	strong



	config. B

	2.5D

	41

	0.7

	strong



	config. C

	3D

	106

	1

	strong



	config. D

	3D

	32.7

	1.6

	strong



	config. E

	3D

	50.8

	0.9

	strong








Zone size variance

3NSA
This feature estimates the variance in zone counts over the different
zone sizes. As before let \(p_{ij} = s_{ij}/N_s\). The feature is
defined as:


\[F_{\mathit{szm.zs.var}}= \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} (j-\mu)^2 p_{ij}\]

Mean zone size is defined as
\(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} j\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	21

	—

	strong



	dig. phantom

	2.5D

	17.3

	—

	strong



	dig. phantom

	3D

	331

	—

	very strong



	config. A

	2D

	609

	9

	strong



	config. A

	2.5D

	660

	8

	strong



	config. B

	2D

	423

	8

	strong



	config. B

	2.5D

	429

	8

	strong



	config. C

	3D

	\(3.89 \times 10^{4}\)

	900

	strong



	config. D

	3D

	\(9.9 \times 10^{4}\)

	\(2.8 \times 10^{3}\)

	strong



	config. E

	3D

	\(5.85 \times 10^{4}\)

	800

	strong








Zone size entropy

GU8N
Let \(p_{ij} = s_{ij}/N_s\). Zone size entropy is then defined as:


\[F_{\mathit{szm.zs.entr}} = - \sum_{i=1}^{N_g} \sum_{j=1}^{N_z} p_{ij} \log_2 p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	1.93

	—

	strong



	dig. phantom

	2.5D

	3.08

	—

	strong



	dig. phantom

	3D

	2.32

	—

	very strong



	config. A

	2D

	5.92

	0.02

	strong



	config. A

	2.5D

	6.39

	0.01

	strong



	config. B

	2D

	5.29

	0.01

	strong



	config. B

	2.5D

	5.98

	0.02

	strong



	config. C

	3D

	7

	0.01

	strong



	config. D

	3D

	6.52

	0.01

	strong



	config. E

	3D

	6.57

	0.01

	strong









Grey level distance zone based features

VMDZ
The grey level distance zone matrix (GLDZM) counts the number of groups
(or zones) of linked voxels which share a specific discretised grey
level value and possess the same distance to ROI edge
[Thibault2014]. The GLDZM thus captures the relation
between location and grey level. Two maps are required to calculate the
GLDZM. The first is a grey level zone map, which is identical to the one
created for the grey level size zone matrix (GLSZM), see
Grey level size zone based features. The second is a distance map, which will be
described in detail later.

As with GSLZM, neighbouring voxels are linked if they share the same
grey level value. Whether a voxel classifies as a neighbour depends on
its connectedness. We consider 26-connectedness for a 3D approach and
8-connectedness in the 2D approach.

The distance to the ROI edge is defined according to 6 and
4-connectedness for 3D and 2D, respectively. Because of the
connectedness definition used, the distance of a voxel to the outer
border is equal to the minimum number edges of neighbouring voxels that
need to be crossed to reach the ROI edge. The distance for a linked
group of voxels with the same grey value is equal to the minimum
distance for the respective voxels in the distance map.

Our definition deviates from the original by
[Thibault2014]. The original was defined in a
rectangular 2D image, whereas ROIs are rarely rectangular cuboids.
Approximating distance using Chamfer maps is then no longer a fast and
easy solution. Determining distance iteratively in 6 or 4-connectedness
is a relatively efficient solution, implemented as follows:


	The ROI mask is morphologically eroded using the appropriate (6 or
4-connected) structure element.


	All eroded ROI voxels are updated in the distance map by adding 1.


	The above steps are performed iteratively until the ROI mask is
empty.




A second difference with the original definition is that the lowest
possible distance is \(1\) instead of \(0\) for voxels directly
on the ROI edge. This prevents division by \(0\) for some features.

Let \(\mathbf{M}\) be the \(N_g \times N_d\) grey level size
zone matrix, where \(N_g\) is the number of discretised grey levels
present in the ROI intensity mask and \(N_d\) the largest distance
of any zone. Element \(d_{ij}=d(i,j)\) of \(\mathbf{M}\) is then
number of zones with discretised grey level \(i\) and distance
\(j\). Furthermore, let \(N_v\) be the number of voxels and
\(N_s=\sum_{i=1}^{N_g}\sum_{j=1}^{N_d}d_{ij}\) be the total zone
count. Marginal sums can likewise be defined. Let
\(d_{i.}=\sum_{j=1}^{N_d}d_{ij}\) be the number of zones with
discretised grey level \(i\), regardless of distance. Likewise, let
\(d_{.j}=\sum_{i=1}^{N_g}d_{ij}\) be the number of zones with
distance \(j\), regardless of grey level. A two dimensional example
is shown in Fig. 17.


[image: _images/figGLDZM1.png]

Fig. 17 Original image with grey levels (a); corresponding distance map for distance to border (b); and corresponding
grey level distance zone matrix (GLDZM) under 4-connectedness (c). Element \(d_{i,j}\) of the
GLDZM indicates the number of times a zone with grey level \(i\) and a minimum distance to border \(j\)
occurs within the image.





Morphological and intensity masks.

The GLDZM is special in that it uses both ROI masks. The distance map is
determined using the morphological ROI mask, whereas the intensity mask
is used for determining the zones, as with the GLSZM.



Aggregating features

Three methods can be used to aggregate GLDZMs and arrive at a single
feature value. A schematic example was previously shown in Figure
Fig. 16. A feature may be
aggregated as follows:


	Features are computed from 2D matrices and averaged over slices
(8QNN).


	The feature is computed from a single matrix after merging all 2D
matrices (62GR).


	The feature is computed from a 3D matrix (KOBO).




Method 2 involves merging GLDZMs by summing the number of zones
\(d_{ij}\) over the GLDZM for the different slices. Note that when
matrices are merged, \(N_v\) should likewise be summed to retain
consistency. Feature values may dependent strongly on the aggregation
method.



Distances

In addition to the use of different distance norms to determine voxel
linkage, as described in Grey level size zone based features, different
distance norms may be used to determine distance of zones to the
boundary. The default is to use the Manhattan norm which allows for a
computationally efficient implementation, as described above. A similar
implementation is possible using the Chebyshev norm, as it merely
changes connectedness of the structure element. Implementations using an
Euclidean distance norm are less efficient as this demands searching for
the nearest non-ROI voxel for each of the \(N_v\) voxels in the ROI.
An added issue is that Euclidean norms may lead to a wide range of
different distances \(j\) that require rounding before constructing
the grey level distance zone matrix \(\mathbf{M}\). Using different
distance norms is non-standard use, and we caution against it due to
potential reproducibility issues.



Note on feature references

GLDZM feature definitions are based on the definitions of GLRLM features
[Thibault2014]. Hence, references may be found in the
section on GLRLM (Grey level run length based features).


Small distance emphasis

0GBI
This feature emphasises small distances. It is defined as:


\[F_{\mathit{dzm.sde}} = \frac{1}{N_s} \sum_{j=1}^{N_d} \frac{d_{.j}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.946

	—

	strong



	dig. phantom

	2.5D

	0.917

	—

	moderate



	dig. phantom

	3D

	1

	—

	very strong



	config. A

	2D

	0.192

	0.006

	strong



	config. A

	2.5D

	0.168

	0.005

	strong



	config. B

	2D

	0.36

	0.005

	strong



	config. B

	2.5D

	0.329

	0.004

	strong



	config. C

	3D

	0.531

	0.006

	strong



	config. D

	3D

	0.579

	0.004

	strong



	config. E

	3D

	0.527

	0.004

	moderate








Large distance emphasis

MB4I
This feature emphasises large distances. It is defined as:


\[F_{\mathit{dzm.lde}} = \frac{1}{N_s} \sum_{j=1}^{N_d} j^2 d_{.j}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	1.21

	—

	strong



	dig. phantom

	2.5D

	1.33

	—

	moderate



	dig. phantom

	3D

	1

	—

	very strong



	config. A

	2D

	161

	1

	moderate



	config. A

	2.5D

	178

	1

	moderate



	config. B

	2D

	31.6

	0.2

	moderate



	config. B

	2.5D

	34.3

	0.2

	moderate



	config. C

	3D

	11

	0.3

	strong



	config. D

	3D

	10.3

	0.1

	strong



	config. E

	3D

	12.6

	0.1

	moderate








Low grey level zone emphasis

S1RA
This feature is a grey level analogue to small distance emphasis.
Instead of small zone distances, low grey levels are emphasised. The
feature is defined as:


\[F_{\mathit{dzm.lgze}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \frac{d_{i.}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.371

	—

	strong



	dig. phantom

	2.5D

	0.368

	—

	moderate



	dig. phantom

	3D

	0.253

	—

	very strong



	config. A

	2D

	0.0368

	0.0005

	strong



	config. A

	2.5D

	0.0291

	0.0005

	strong



	config. B

	2D

	0.0475

	0.001

	strong



	config. B

	2.5D

	0.0387

	0.001

	strong



	config. C

	3D

	0.00235

	\(6 \times 10^{-5}\)

	strong



	config. D

	3D

	0.0409

	0.0005

	strong



	config. E

	3D

	0.034

	0.0004

	moderate








High grey level zone emphasis

K26C
The high grey level zone emphasis feature is a grey level analogue to
large distance emphasis. The feature emphasises high grey levels, and
is defined as:


\[F_{\mathit{dzm.hgze}}=\frac{1}{N_s} \sum_{i=1}^{N_g} i^2 d_{i.}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	16.4

	—

	strong



	dig. phantom

	2.5D

	16.2

	—

	moderate



	dig. phantom

	3D

	15.6

	—

	very strong



	config. A

	2D

	363

	3

	strong



	config. A

	2.5D

	370

	3

	strong



	config. B

	2D

	284

	11

	strong



	config. B

	2.5D

	284

	11

	strong



	config. C

	3D

	971

	7

	strong



	config. D

	3D

	188

	10

	strong



	config. E

	3D

	286

	6

	strong








Small distance low grey level emphasis

RUVG
This feature emphasises runs in the upper left quadrant of the GLDZM,
where small zone distances and low grey levels are located. It is
defined as:


\[F_{\mathit{dzm.sdlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{d_{ij}}{i^2 j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.367

	—

	strong



	dig. phantom

	2.5D

	0.362

	—

	moderate



	dig. phantom

	3D

	0.253

	—

	very strong



	config. A

	2D

	0.00913

	0.00023

	strong



	config. A

	2.5D

	0.00788

	0.00022

	strong



	config. B

	2D

	0.0192

	0.0005

	strong



	config. B

	2.5D

	0.0168

	0.0005

	strong



	config. C

	3D

	0.00149

	\(4 \times 10^{-5}\)

	strong



	config. D

	3D

	0.0302

	0.0006

	strong



	config. E

	3D

	0.0228

	0.0003

	moderate








Small distance high grey level emphasis

DKNJ
This feature emphasises runs in the lower left quadrant of the GLDZM,
where small zone distances and high grey levels are located. Small
distance high grey level emphasis is defined as:


\[F_{\mathit{dzm.sdhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{i^2 d_{ij}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	15.2

	—

	strong



	dig. phantom

	2.5D

	14.3

	—

	moderate



	dig. phantom

	3D

	15.6

	—

	very strong



	config. A

	2D

	60.1

	3.3

	strong



	config. A

	2.5D

	49.5

	2.8

	strong



	config. B

	2D

	95.7

	5.5

	strong



	config. B

	2.5D

	81.4

	4.6

	strong



	config. C

	3D

	476

	11

	strong



	config. D

	3D

	99.3

	5.1

	strong



	config. E

	3D

	136

	4

	moderate








Large distance low grey level emphasis

A7WM
This feature emphasises runs in the upper right quadrant of the GLDZM,
where large zone distances and low grey levels are located. The feature
is defined as:


\[F_{\mathit{dzm.ldlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{j^2 d_{ij}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.386

	—

	strong



	dig. phantom

	2.5D

	0.391

	—

	moderate



	dig. phantom

	3D

	0.253

	—

	very strong



	config. A

	2D

	2.96

	0.02

	moderate



	config. A

	2.5D

	2.31

	0.01

	moderate



	config. B

	2D

	0.934

	0.018

	moderate



	config. B

	2.5D

	0.748

	0.017

	moderate



	config. C

	3D

	0.0154

	0.0005

	strong



	config. D

	3D

	0.183

	0.004

	strong



	config. E

	3D

	0.179

	0.004

	moderate








Large distance high grey level emphasis

KLTH
This feature emphasises runs in the lower right quadrant of the GLDZM,
where large zone distances and high grey levels are located. The large
distance high grey level emphasis feature is defined as:


\[F_{\mathit{dzm.ldhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} i^2 j^2 d_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	21.3

	—

	strong



	dig. phantom

	2.5D

	23.7

	—

	moderate



	dig. phantom

	3D

	15.6

	—

	very strong



	config. A

	2D

	\(7.01 \times 10^{4}\)

	100

	moderate



	config. A

	2.5D

	\(7.95 \times 10^{4}\)

	100

	moderate



	config. B

	2D

	\(1.06 \times 10^{4}\)

	300

	strong



	config. B

	2.5D

	\(1.16 \times 10^{4}\)

	400

	strong



	config. C

	3D

	\(1.34 \times 10^{4}\)

	200

	strong



	config. D

	3D

	\(2.62 \times 10^{3}\)

	110

	strong



	config. E

	3D

	\(4.85 \times 10^{3}\)

	60

	moderate








Grey level non-uniformity

VFT7
This feature measures the distribution of zone counts over the grey
values. Grey level non-uniformity is low when zone counts are equally
distributed along grey levels. The feature is defined as:


\[F_{\mathit{dzm.glnu}}= \frac{1}{N_s} \sum_{i=1}^{N_g} d_{i.}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	1.41

	—

	strong



	dig. phantom

	2.5D

	5.44

	—

	moderate



	dig. phantom

	3D

	1.4

	—

	very strong



	config. A

	2D

	82.2

	0.1

	strong



	config. A

	2.5D

	\(1.8 \times 10^{3}\)

	10

	strong



	config. B

	2D

	20.5

	0.1

	strong



	config. B

	2.5D

	437

	3

	strong



	config. C

	3D

	195

	6

	strong



	config. D

	3D

	212

	6

	strong



	config. E

	3D

	231

	6

	moderate








Normalised grey level non-uniformity

7HP3
This is a normalised version of the grey level non-uniformity feature.
It is defined as:


\[F_{\mathit{dzm.glnu.norm}}= \frac{1}{N_s^2} \sum_{i=1}^{N_g} d_{i.}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.323

	—

	strong



	dig. phantom

	2.5D

	0.302

	—

	moderate



	dig. phantom

	3D

	0.28

	—

	very strong



	config. A

	2D

	0.0728

	0.0014

	strong



	config. A

	2.5D

	0.0622

	0.0007

	strong



	config. B

	2D

	0.0789

	0.001

	strong



	config. B

	2.5D

	0.0613

	0.0005

	strong



	config. C

	3D

	0.0286

	0.0003

	strong



	config. D

	3D

	0.0491

	0.0008

	strong



	config. E

	3D

	0.0414

	0.0003

	moderate








Zone distance non-uniformity

V294
Zone distance non-uniformity measures the distribution of zone counts
over the different zone distances. Zone distance non-uniformity is low
when zone counts are equally distributed along zone distances. It is
defined as:


\[F_{\mathit{dzm.zdnu}}= \frac{1}{N_s} \sum_{j=1}^{N_d} d_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	3.79

	—

	strong



	dig. phantom

	2.5D

	14.4

	—

	moderate



	dig. phantom

	3D

	5

	—

	very strong



	config. A

	2D

	64

	0.4

	moderate



	config. A

	2.5D

	\(1.57 \times 10^{3}\)

	10

	strong



	config. B

	2D

	39.8

	0.3

	moderate



	config. B

	2.5D

	963

	6

	moderate



	config. C

	3D

	\(1.87 \times 10^{3}\)

	40

	strong



	config. D

	3D

	\(1.37 \times 10^{3}\)

	20

	strong



	config. E

	3D

	\(1.5 \times 10^{3}\)

	30

	moderate








Normalised zone distance non-uniformity

IATH
This is a normalised version of the zone distance non-uniformity
feature. It is defined as:


\[F_{\mathit{dzm.zdnu.norm}}= \frac{1}{N_s^2} \sum_{i=1}^{N_d} d_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.898

	—

	strong



	dig. phantom

	2.5D

	0.802

	—

	moderate



	dig. phantom

	3D

	1

	—

	very strong



	config. A

	2D

	0.0716

	0.0022

	strong



	config. A

	2.5D

	0.0543

	0.0014

	strong



	config. B

	2D

	0.174

	0.003

	strong



	config. B

	2.5D

	0.135

	0.001

	strong



	config. C

	3D

	0.274

	0.005

	strong



	config. D

	3D

	0.317

	0.004

	strong



	config. E

	3D

	0.269

	0.003

	moderate








Zone percentage

VIWW
This feature measures the fraction of the number of realised zones and
the maximum number of potential zones. Highly uniform ROIs produce a low
zone percentage. It is defined as:


\[F_{\mathit{dzm.z.perc}}=\frac{N_s}{N_v}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.24

	—

	strong



	dig. phantom

	2.5D

	0.243

	—

	moderate



	dig. phantom

	3D

	0.0676

	—

	very strong



	config. A

	2D

	0.3

	0.003

	strong



	config. A

	2.5D

	0.253

	0.004

	moderate



	config. B

	2D

	0.324

	0.001

	strong



	config. B

	2.5D

	0.26

	0.002

	moderate



	config. C

	3D

	0.148

	0.003

	strong



	config. D

	3D

	0.0972

	0.0007

	strong



	config. E

	3D

	0.126

	0.001

	moderate








Grey level variance

QK93
This feature estimates the variance in zone counts over the grey levels.
Let \(p_{ij} = d_{ij}/N_s\) be the joint probability estimate for
finding zones with discretised grey level \(i\) at distance
\(j\). The feature is then defined as:


\[F_{\mathit{dzm.gl.var}}=  \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} (i-\mu)^2 p_{ij}\]

Here, \(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} i\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	3.97

	—

	strong



	dig. phantom

	2.5D

	3.92

	—

	moderate



	dig. phantom

	3D

	2.64

	—

	very strong



	config. A

	2D

	42.7

	0.7

	moderate



	config. A

	2.5D

	47.9

	0.4

	strong



	config. B

	2D

	36.1

	0.3

	moderate



	config. B

	2.5D

	41

	0.7

	strong



	config. C

	3D

	106

	1

	strong



	config. D

	3D

	32.7

	1.6

	strong



	config. E

	3D

	50.8

	0.9

	strong








Zone distance variance

7WT1
This feature estimates the variance in zone counts for the different
zone distances. As before let \(p_{ij} = d_{ij}/N_s\). The feature
is defined as:


\[F_{\mathit{dzm.zd.var}}= \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} (j-\mu)^2 p_{ij}\]

Mean zone size is defined as
\(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} j\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.051

	—

	strong



	dig. phantom

	2.5D

	0.0988

	—

	moderate



	dig. phantom

	3D

	0

	—

	very strong



	config. A

	2D

	69.4

	0.1

	moderate



	config. A

	2.5D

	78.9

	0.1

	moderate



	config. B

	2D

	13.5

	0.1

	moderate



	config. B

	2.5D

	15

	0.1

	moderate



	config. C

	3D

	4.6

	0.06

	strong



	config. D

	3D

	4.61

	0.04

	strong



	config. E

	3D

	5.56

	0.05

	strong








Zone distance entropy

GBDU
Again, let \(p_{ij} = d_{ij}/N_s\). Zone distance entropy is then
defined as:


\[F_{\mathit{dzm.zd.entr}} = - \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p_{ij} \log_2 p_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	1.73

	—

	strong



	dig. phantom

	2.5D

	2

	—

	moderate



	dig. phantom

	3D

	1.92

	—

	very strong



	config. A

	2D

	8

	0.04

	strong



	config. A

	2.5D

	8.87

	0.03

	strong



	config. B

	2D

	6.47

	0.03

	strong



	config. B

	2.5D

	7.58

	0.01

	moderate



	config. C

	3D

	7.56

	0.03

	strong



	config. D

	3D

	6.61

	0.03

	strong



	config. E

	3D

	7.06

	0.01

	moderate









Neighbourhood grey tone difference based features

IPET
[Amadasun1989] introduced an alternative to the grey
level co-occurrence matrix. The neighbourhood grey tone difference
matrix (NGTDM) contains the sum of grey level differences of
pixels/voxels with discretised grey level \(i\) and the average
discretised grey level of neighbouring pixels/voxels within a Chebyshev
distance \(\delta\). For 3D volumes, we can extend the original
definition by Amadasun and King. Let \(X_{d,k}\) be the discretised
grey level of a voxel at position \(\mathbf{k}=(k_x,k_y,k_z)\). Then
the average grey level within a neighbourhood centred at
\((k_x,k_y,k_z)\), but excluding \((k_x,k_y,k_z)\) itself is:


\[\begin{split}\begin{aligned}
\overline{X}_k& =\frac{1}{W}\sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta X_{d}(k_x{+}m_x, k_y{+}m_y, k_z{+}m_z)\\
& \hspace{6cm} (m_x,m_y,m_z)\neq (0,0,0)\end{aligned}\end{split}\]

\(W=(2\delta+1)^3-1\) is the size of the 3D neighbourhood. For 2D
\(W=(2\delta+1)^2-1\), and averages are not calculated between
different slices. Neighbourhood grey tone difference \(s_i\) for
discretised grey level \(i\) is then:


\[s_i=\sum_{k}^{N_v} |i-\overline{X}_k| \, \big[X_d(\mathbf{k})=i \text{ and } k \text{ has a valid neighbourhood}\big]\]

Here, \([\ldots]\) is an Iverson bracket, which is \(1\) if the
conditions that the grey level \(X_{d,k}\) of voxel \(k\) is
equal to \(i\) and the voxel has a valid neighbourhood are both
true; it is \(0\) otherwise. \(N_v\) is the number of voxels in
the ROI intensity mask.

A 2D example is shown in Fig. 18. A distance
of \(\delta=1\) is used in this example, leading to 8 neighbouring
pixels. Entry \(s_1=0\) because there are no valid pixels with grey
level \(1\). Two pixels have grey level \(2\). The average value
of their neighbours are \(19/8\) and \(21/8\). Thus
\(s_2=|2-19/8|+|2-21/8|=1\). Similarly \(s_3=|3-19/8|=0.625\)
and \(s_4=|4-17/8|=1.825\).

We deviate from the original definition by
[Amadasun1989] as we do not demand that valid
neighbourhoods are completely inside the ROI. In an irregular ROI mask,
valid neighbourhoods may simply not exist for a distance \(\delta\).
Instead, we consider a valid neighbourhood to exist if there is at least
one neighbouring voxel included in the ROI mask. The average grey level
for voxel \(k\) within a valid neighbourhood is then:


\[\overline{X}_k =\frac{1}{W_k}\sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta X_{d}(\mathbf{k}+\mathbf{m}) \big[\mathbf{m\neq\mathbf{0}} \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

The neighbourhood size \(W_k\) for this voxel is equal to the
number of voxels in the neighbourhood that are part of the ROI mask:


\[W_k = \sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta \big[\mathbf{m\neq\mathbf{0}} \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

Under our definition, neighbourhood grey tone difference \(s_i\)
for discretised grey level \(i\) can be directly expressed using
neighbourhood size \(W_k\) of voxel \(k\):


\[s_i=\sum_{k}^{N_v} |i-\overline{X}_k| \, \big[X_d(\mathbf{k})=i \text{ and } W_k\neq0\big]\]

Consequentially, \(n_i\) is the total number of voxels with grey
level \(i\) which have a non-zero neighbourhood size.

Many NGTDM-based features depend on the \(N_g\) grey level
probabilities \(p_i=n_i/N_{v,c}\), where \(N_g\) is the number
of discretised grey levels in the ROI intensity mask and
\(N_{v,c}=\sum n_i\) is total number of voxels that have at least
one neighbour. If all voxels have at least one neighbour
\(N_{v,c}=N_v\). Furthermore, let \(N_{g,p} \leq N_g\) be the
number of discretised grey levels with \(p_i>0\). In the above
example, \(N_g=4\) and \(N_{g,p}=3\).


[image: _images/figNGTDM1.png]

Fig. 18 Original image with grey levels (a) and corresponding neighbourhood grey tone
difference matrix (NGTDM) (b). The \(N_{v,c}\) pixels with valid neighbours at
distance 1 are located within the rectangle in (a). The grey level voxel count \(n_i\), the grey level probability
\(p_i=n_i/N_{v,c}\), and the neighbourhood grey level difference \(s_i\) for pixels with grey level \(i\) are included in the NGTDM.
Note that our actual definition deviates from the original definition of [Amadasun1989], which is used here.
In our definition complete neighbourhood are no longer required. In our definition the NGTDM would be calculated on
the entire pixel area, and not solely on those pixels within the rectangle of panel (a).





Aggregating features

Three methods can be used to aggregate NGTDMs and arrive at a single
feature value. A schematic example was previously shown in
Fig. 16. A feature may be
aggregated as follows:


	Features are computed from 2D matrices and averaged over slices
(8QNN).


	The feature is computed from a single matrix after merging all 2D
matrices (62GR).


	The feature is computed from a 3D matrix (KOBO).




Method 2 involves merging NGTDMs by summing the neighbourhood grey tone
difference \(s_i\) and the number of voxels with a valid
neighbourhood \(n_i\) and grey level \(i\) for NGTDMs of the
different slices. Note that when NGTDMs are merged, \(N_{v,c}\) and
\(p_i\) should be updated based on the merged NGTDM. Feature values
may dependent strongly on the aggregation method.



Distances and distance weighting

The default neighbourhood is defined using the Chebyshev norm. Manhattan
or Euclidean norms may be used as well. This requires a more general
definition for the average grey level \(\overline{X}_k\):


\[\overline{X}_k =\frac{1}{W_k}\sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta X_{d}(\mathbf{k}+\mathbf{m}) \big[\|\mathbf{m}\|\leq\delta \text{ and } \mathbf{m\neq\mathbf{0}} \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

The neighbourhood size \(W_k\) is:


\[W_k = \sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta \big[\|\mathbf{m}\|\leq\delta \text{ and } \mathbf{m\neq\mathbf{0}} \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

As before, \(\big[\ldots\big]\) is an Iverson bracket.

Distance weighting for NGTDM is relatively straightforward. Let
\(w\) be a weight dependent on \(\mathbf{m}\), e.g.
\(w=\|\mathbf{m}\|^{-1}\) or
\(w=\exp(-\|\mathbf{m}\|^2)\). The average grey level is then:


\[\overline{X}_k =\frac{1}{W_k}\sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta w(\mathbf{m}) X_{d}(\mathbf{k}+\mathbf{m}) \big[\|\mathbf{m}\|\leq\delta \text{ and } \mathbf{m\neq\mathbf{0}} \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

The neighbourhood size \(W_k\) becomes a general weight:


\[W_k = \sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta w(\mathbf{m}) \big[\|\mathbf{m}\|\leq\delta \text{ and } \mathbf{m\neq\mathbf{0}} \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

Employing different distance norms and distance weighting is considered
non-standard use, and we caution against them due to potential
reproducibility issues.


Coarseness

QCDE
Grey level differences in coarse textures are generally small due to
large-scale patterns. Summing differences gives an indication of the
level of the spatial rate of change in intensity
[Amadasun1989]. Coarseness is defined as:


\[F_{\mathit{ngt.coarseness}}=\frac{1}{\sum_{i=1}^{N_g} p_i\,s_i }\]

Because \(\sum_{i=1}^{N_g} p_i\,s_i\) potentially evaluates to 0,
the maximum coarseness value is set to an arbitrary number of
\(10^6\). Amadasun and King originally circumvented this issue by
adding a unspecified small number \(\epsilon\) to the denominator,
but an explicit, though arbitrary, maximum value should allow for more
consistency.










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.121

	—

	strong



	dig. phantom

	2.5D

	0.0285

	—

	strong



	dig. phantom

	3D

	0.0296

	—

	very strong



	config. A

	2D

	0.00629

	0.00046

	strong



	config. A

	2.5D

	\(9.06 \times 10^{-5}\)

	\(3.3 \times 10^{-6}\)

	strong



	config. B

	2D

	0.0168

	0.0005

	strong



	config. B

	2.5D

	0.000314

	\(4 \times 10^{-6}\)

	strong



	config. C

	3D

	0.000216

	\(4 \times 10^{-6}\)

	strong



	config. D

	3D

	0.000208

	\(4 \times 10^{-6}\)

	very strong



	config. E

	3D

	0.000188

	\(4 \times 10^{-6}\)

	strong








Contrast

65HE
Contrast depends on the dynamic range of the grey levels as well as
the spatial frequency of intensity changes
[Amadasun1989]. Thus, contrast is defined as:


\[F_{\mathit{ngt.contrast}}=\left(\frac{1}{N_{g,p}\left(N_{g,p}-1\right)} \sum_{i_{1}=1}^{N_g} \sum_{i_{2}=1}^{N_g} p_{i_{1}} p_{i_{2}}\,(i_{1}-i_{2})^2 \right) \left( \frac{1}{N_{v,c}}\sum_{i=1}^{N_g} s_i \right)\]

Grey level probabilities \(p_{i_{1}}\) and \(p_{i_{2}}\) are
copies of \(p_i\) with different iterators, i.e.
\(p_{i_{1}}=p_{i_{2}}\) for \(i_{1}=i_{2}\). The first term
considers the grey level dynamic range, whereas the second term is a
measure for intensity changes within the volume. If \(N_{g,p}=1\),
\(F_{\mathit{ngt.contrast}}=0\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.925

	—

	strong



	dig. phantom

	2.5D

	0.601

	—

	strong



	dig. phantom

	3D

	0.584

	—

	very strong



	config. A

	2D

	0.107

	0.002

	strong



	config. A

	2.5D

	0.0345

	0.0009

	strong



	config. B

	2D

	0.181

	0.001

	strong



	config. B

	2.5D

	0.0506

	0.0005

	strong



	config. C

	3D

	0.0873

	0.0019

	strong



	config. D

	3D

	0.046

	0.0005

	strong



	config. E

	3D

	0.0752

	0.0019

	strong








Busyness

NQ30
Textures with large changes in grey levels between neighbouring voxels
are said to be busy [Amadasun1989]. Busyness was
defined as:


\[F_{\mathit{ngt.busyness}}=\frac{\sum_{i=1}^{N_g}p_i\,s_i}{\sum_{i_{1}=1}^{N_g}\sum_{i_2=1}^{N_g} i_{1} \, p_{i_{1}}- i_{2} \, p_{i_{2}}},\qquad \text{$p_{i_{1}}\neq 0$ \text{and} $p_{i_{2}}\neq 0$}\]

As before, \(p_{i_{1}}=p_{i_{2}}\) for \(i_{1}=i_{2}\). The
original definition was erroneously formulated as the denominator will
always evaluate to 0. Therefore we use a slightly different definition
[Hatt2016]:


\[F_{\mathit{ngt.busyness}}=\frac{\sum_{i=1}^{N_g}p_i\,s_i}{\sum_{i_{1}=1}^{N_g}\sum_{i_{2}=1}^{N_g} \left| i_{1} \, p_{i_{1}}-i_{2} \, p_{i_{2}}\right|},\qquad \text{$p_{i_{1}}\neq 0$ \text{and} $p_{i_{2}}\neq 0$}\]

If \(N_{g,p}=1\), \(F_{\mathit{ngt.busyness}}=0\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	2.99

	—

	strong



	dig. phantom

	2.5D

	6.8

	—

	strong



	dig. phantom

	3D

	6.54

	—

	very strong



	config. A

	2D

	0.489

	0.001

	strong



	config. A

	2.5D

	8.84

	0.01

	strong



	config. B

	2D

	0.2

	0.005

	strong



	config. B

	2.5D

	3.45

	0.07

	strong



	config. C

	3D

	1.39

	0.01

	strong



	config. D

	3D

	5.14

	0.14

	very strong



	config. E

	3D

	4.65

	0.1

	strong








Complexity

HDEZ
Complex textures are non-uniform and rapid changes in grey levels are
common [Amadasun1989]. Texture complexity is
defined as:


\[F_{\mathit{ntg.complexity}}=\frac{1}{N_{v,c}}\sum_{i_{1}=1}^{N_g}\sum_{i_{2}=1}^{N_g} \left| i_{1} - i_{2}\right| \frac{p_{i_{1}}\, s_{i_{1}} + p_{i_{2}}\,s_{i_{2}}}{p_{i_{1}} + p_{i_{2}}}, \qquad \text{$p_{i_{1}}\neq 0$ \text{and} $p_{i_{2}}\neq 0$}\]

As before, \(p_{i_{1}}=p_{i_{2}}\) for \(i_{1}=i_{2}\), and
likewise \(s_{i_{1}}=s_{i_{2}}\) for \(i_{1}=i_{2}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	10.4

	—

	strong



	dig. phantom

	2.5D

	14.1

	—

	strong



	dig. phantom

	3D

	13.5

	—

	very strong



	config. A

	2D

	438

	9

	strong



	config. A

	2.5D

	580

	19

	strong



	config. B

	2D

	391

	7

	strong



	config. B

	2.5D

	496

	5

	strong



	config. C

	3D

	\(1.81 \times 10^{3}\)

	60

	strong



	config. D

	3D

	400

	5

	strong



	config. E

	3D

	574

	1

	strong








Strength

1X9X
[Amadasun1989] defined texture strength as:


\[F_{\mathit{ngt.strength}}=\frac{\sum_{i_{1}=1}^{N_g}\sum_{i_{2}=1}^{N_g}\left( p_{i_{1}} + p_{i_{2}} \right) \left( i_{1} - i_{2}\right)^2 }{\sum_{i=1}^{N_g}s_i},\qquad \text{$p_{i_{1}}\neq 0$ \text{and} $p_{i_{2}}\neq 0$}\]

As before, \(p_{i_{1}}=p_{i_{2}}\) for \(i_{1}=i_{2}\). If
\(\sum_{i=1}^{N_g}s_i=0\), \(F_{\mathit{ngt.strength}}=0\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	2.88

	—

	strong



	dig. phantom

	2.5D

	0.741

	—

	strong



	dig. phantom

	3D

	0.763

	—

	very strong



	config. A

	2D

	3.33

	0.08

	strong



	config. A

	2.5D

	0.0904

	0.0027

	strong



	config. B

	2D

	6.02

	0.23

	strong



	config. B

	2.5D

	0.199

	0.009

	strong



	config. C

	3D

	0.651

	0.015

	strong



	config. D

	3D

	0.162

	0.008

	very strong



	config. E

	3D

	0.167

	0.006

	strong









Neighbouring grey level dependence based features

REK0
[Sun1983] defined the neighbouring grey level
dependence matrix (NGLDM) as an alternative to the grey level
co-occurrence matrix. The NGLDM aims to capture the coarseness of the
overall texture and is rotationally invariant.

NGLDM also involves the concept of a neighbourhood around a central
voxel. All voxels within Chebyshev distance \(\delta\) are
considered to belong to the neighbourhood of the center voxel. The
discretised grey levels of the center voxel \(k\) at position
\(\mathbf{k}\) and a neighbouring voxel \(m\) at
\(\mathbf{k}+\mathbf{m}\) are said to be dependent if
\(|X_d(\mathbf{k}) - X_d(\mathbf{k}+\mathbf{m}) | \leq \alpha\),
with \(\alpha\) being a non-negative integer coarseness parameter.
The number of grey level dependent voxels \(j\) within the
neighbourhood is then counted as:


\[j_k = 1+\sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta \big[|X_{d}(\mathbf{k})-X_{d}(\mathbf{k}+\mathbf{m})| \leq \alpha \text{ and } \mathbf{m}\neq\mathbf{0}\big]\]

Here, \(\big[\ldots\big]\) is an Iverson bracket, which is
\(1\) if the aforementioned condition is fulfilled, and \(0\)
otherwise. Note that the minimum dependence \(j_k=1\) and not
\(j_k=0\). This is done because some feature definitions require a
minimum dependence of 1 or are undefined otherwise. One may therefore
also simplify the expression for \(j_k\) by including the center
voxel:


\[j_k = \sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta \big[|X_{d}(\mathbf{k})-X_{d}(\mathbf{k}+\mathbf{m})| \leq \alpha\big]\]

Dependence \(j_k\) is iteratively determined for each voxel
\(k\) in the ROI intensity mask. \(\mathbf{M}\) is then the
\(N_g \times N_n\) neighbouring grey level dependence matrix, where
\(N_g\) is the number of discretised grey levels present in the ROI
intensity mask and \(N_n=\text{max}(j_k)\) the maximum grey level
dependence count found. Element \(s_{ij}\) of \(\mathbf{M}\) is
then the number of neighbourhoods with a center voxel with discretised
grey level \(i\) and a neighbouring voxel dependence \(j\).
Furthermore, let \(N_v\) be the number of voxels in the ROI
intensity mask, and
\(N_s = \sum_{i=1}^{N_g}\sum_{j=1}^{N_n} s_{ij}\) the number of
neighbourhoods. Marginal sums can likewise be defined. Let
\(s_{i.}=\sum_{j=1}^{N_n}\) be the number of neighbourhoods with
discretised grey level \(i\), and let
\(s_{j.}=\sum_{i=1}^{N_g}s_{ij}\) be the number of neighbourhoods
with dependence \(j\), regardless of grey level. A two dimensional
example is shown in  Fig. 19.

The definition we actually use deviates from the original by
[Sun1983]. Because regions of interest are rarely
cuboid, omission of neighbourhoods which contain voxels outside the ROI
mask may lead to inconsistent results, especially for larger distance
\(\delta\). Hence the neighbourhoods of all voxels in the within the
ROI intensity mask are considered, and consequently \(N_v=N_s\).
Neighbourhood voxels located outside the ROI do not add to dependence
\(j\):


\[j_k = \sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta \big[|X_{d}(\mathbf{k})-X_{d}(\mathbf{k}+\mathbf{m})| \leq \alpha \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

Note that while \(\alpha=0\) is a typical choice for the coarseness
parameter, different \(\alpha\) are possible. Likewise, a typical
choice for neighbourhood radius \(\delta\) is Chebyshev distance
\(\delta=1\) but larger values are possible as well.


[image: _images/figNGLDM1.png]

Fig. 19 Original image with grey levels and pixels with a complete neighbourhood within the
square (a); corresponding neighbouring grey level dependence matrix for
distance \(d = \sqrt{2}\) and coarseness parameter \(a = 0\) (b).
Element \(s_{i,j}\) of the NGLDM indicates the number of neighbourhoods with a center pixel with
grey level i and neighbouring grey level dependence k within the image. Note that in our definition a complete
neighbourhood is no longer required. Thus every voxel is considered as a center voxel with a
neighbourhood, instead of being constrained to the voxels within the square in panel (a).





Aggregating features

Three methods can be used to aggregate NGLDMs and arrive at a single
feature value. A schematic example was previously shown in
Fig. 16. A feature may be aggregated as follows:


	Features are computed from 2D matrices and averaged over slices
(8QNN).


	The feature is computed from a single matrix after merging all 2D
matrices (62GR).


	The feature is computed from a 3D matrix (KOBO).




Method 2 involves merging NGLDMs by summing the dependence count
\(s_{ij}\) by element over the NGLDM of the different slices. Note
that when NGLDMs are merged, \(N_v\) and \(N_s\) should likewise
be summed to retain consistency. Feature values may dependent strongly
on the aggregation method.



Distances and distance weighting

Default neighbourhoods are constructed using the Chebyshev norm, but
other norms can be used as well. For this purpose it is useful to
generalise the dependence count equation to:


\[j_k = \sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta \big[\|\mathbf{m}\|\leq\delta \text{ and } |X_{d}(\mathbf{k})-X_{d}(\mathbf{k}+\mathbf{m})| \leq \alpha \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

with \(\mathbf{m}\) the vector between voxels \(k\) and
\(m\) and \(\|\mathbf{m}\|\) its length according to the
particular norm.

In addition, dependence may be weighted by distance. Let \(w\) be a
weight dependent on \(\mathbf{m}\), e.g.
\(w=\|\mathbf{m}\|^{-1}\) or
\(w=\exp(-\|\mathbf{m}\|^2)\). The dependence of voxel \(k\)
is then:


\[j_k = \sum_{m_z{=}-\delta}^\delta \sum_{m_y{=}-\delta}^\delta \sum_{m_x{=}-\delta}^\delta w(\mathbf{m}) \big[\|\mathbf{m}\|\leq\delta \text{ and } |X_{d}(\mathbf{k})-X_{d}(\mathbf{k}+\mathbf{m})| \leq \alpha \text{ and } \mathbf{k}+\mathbf{m} \text{ in ROI}\big]\]

Employing different distance norms and distance weighting is considered
non-standard use, and we caution against them due to potential
reproducibility issues.



Note on feature references

The NGLDM is structured similarly to the GLRLM, GLSZM and GLDZM. NGLDM
feature definitions are therefore based on the definitions of GLRLM
features, and references may be found in Grey level run length based features,
except for the features originally defined by
[Sun1983].


Low dependence emphasis

SODN
This feature emphasises low neighbouring grey level dependence counts.
[Sun1983] refer to this feature as small number
emphasis. It is defined as:


\[F_{\mathit{ngl.lde}} = \frac{1}{N_s} \sum_{j=1}^{N_n} \frac{s_{.j}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.158

	—

	strong



	dig. phantom

	2.5D

	0.159

	—

	strong



	dig. phantom

	3D

	0.045

	—

	very strong



	config. A

	2D

	0.281

	0.003

	strong



	config. A

	2.5D

	0.243

	0.004

	strong



	config. B

	2D

	0.31

	0.001

	strong



	config. B

	2.5D

	0.254

	0.002

	strong



	config. C

	3D

	0.137

	0.003

	strong



	config. D

	3D

	0.0912

	0.0007

	strong



	config. E

	3D

	0.118

	0.001

	strong








High dependence emphasis

IMOQ
This feature emphasises high neighbouring grey level dependence counts.
[Sun1983] refer to this feature as large number
emphasis. It is defined as:


\[F_{\mathit{ngl.hde}} = \frac{1}{N_s} \sum_{j=1}^{N_n} j^2 s_{.j}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	19.2

	—

	strong



	dig. phantom

	2.5D

	18.8

	—

	strong



	dig. phantom

	3D

	109

	—

	very strong



	config. A

	2D

	14.8

	0.1

	strong



	config. A

	2.5D

	16.1

	0.2

	strong



	config. B

	2D

	17.3

	0.2

	strong



	config. B

	2.5D

	19.6

	0.2

	strong



	config. C

	3D

	126

	2

	strong



	config. D

	3D

	223

	5

	strong



	config. E

	3D

	134

	3

	strong








Low grey level count emphasis

TL9H
This feature is a grey level analogue to low dependence emphasis.
Instead of low neighbouring grey level dependence counts, low grey
levels are emphasised. The feature is defined as:


\[F_{\mathit{ngl.lgce}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \frac{s_{i.}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.702

	—

	strong



	dig. phantom

	2.5D

	0.693

	—

	strong



	dig. phantom

	3D

	0.693

	—

	very strong



	config. A

	2D

	0.0233

	0.0003

	strong



	config. A

	2.5D

	0.0115

	0.0003

	strong



	config. B

	2D

	0.0286

	0.0004

	strong



	config. B

	2.5D

	0.0139

	0.0005

	strong



	config. C

	3D

	0.0013

	\(4 \times 10^{-5}\)

	strong



	config. D

	3D

	0.0168

	0.0009

	strong



	config. E

	3D

	0.0154

	0.0007

	strong








High grey level count emphasis

OAE7
The high grey level count emphasis feature is a grey level analogue to
high dependence emphasis. The feature emphasises high grey levels, and
is defined as:


\[F_{\mathit{ngl.hgce}}=\frac{1}{N_s} \sum_{i=1}^{N_g} i^2 s_{i.}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	7.49

	—

	strong



	dig. phantom

	2.5D

	7.66

	—

	strong



	dig. phantom

	3D

	7.66

	—

	very strong



	config. A

	2D

	446

	2

	strong



	config. A

	2.5D

	466

	2

	strong



	config. B

	2D

	359

	10

	strong



	config. B

	2.5D

	375

	11

	strong



	config. C

	3D

	\(1.57 \times 10^{3}\)

	10

	strong



	config. D

	3D

	364

	16

	strong



	config. E

	3D

	502

	8

	strong








Low dependence low grey level emphasis

EQ3F
This feature emphasises neighbouring grey level dependence counts in the
upper left quadrant of the NGLDM, where low dependence counts and low
grey levels are located. It is defined as:


\[F_{\mathit{ngl.ldlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} \frac{s_{ij}}{i^2 j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.0473

	—

	strong



	dig. phantom

	2.5D

	0.0477

	—

	strong



	dig. phantom

	3D

	0.00963

	—

	very strong



	config. A

	2D

	0.0137

	0.0002

	strong



	config. A

	2.5D

	0.00664

	0.0002

	strong



	config. B

	2D

	0.0203

	0.0003

	strong



	config. B

	2.5D

	0.00929

	0.00026

	strong



	config. C

	3D

	0.000306

	\(1.2 \times 10^{-5}\)

	strong



	config. D

	3D

	0.00357

	\(4 \times 10^{-5}\)

	strong



	config. E

	3D

	0.00388

	\(4 \times 10^{-5}\)

	strong








Low dependence high grey level emphasis

JA6D
This feature emphasises neighbouring grey level dependence counts in the
lower left quadrant of the NGLDM, where low dependence counts and high
grey levels are located. The feature is defined as:


\[F_{\mathit{ngl.ldhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} \frac{i^2 s_{ij}}{j^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	3.06

	—

	strong



	dig. phantom

	2.5D

	3.07

	—

	strong



	dig. phantom

	3D

	0.736

	—

	very strong



	config. A

	2D

	94.2

	0.4

	strong



	config. A

	2.5D

	91.9

	0.5

	strong



	config. B

	2D

	78.9

	2.2

	strong



	config. B

	2.5D

	73.4

	2.1

	strong



	config. C

	3D

	141

	2

	strong



	config. D

	3D

	18.9

	1.1

	strong



	config. E

	3D

	36.7

	0.5

	strong








High dependence low grey level emphasis

NBZI
This feature emphasises neighbouring grey level dependence counts in the
upper right quadrant of the NGLDM, where high dependence counts and low
grey levels are located. The feature is defined as:


\[F_{\mathit{ngl.hdlge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} \frac{j^2 s_{ij}}{i^2}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	17.6

	—

	strong



	dig. phantom

	2.5D

	17.2

	—

	strong



	dig. phantom

	3D

	102

	—

	very strong



	config. A

	2D

	0.116

	0.001

	strong



	config. A

	2.5D

	0.0674

	0.0004

	strong



	config. B

	2D

	0.108

	0.003

	strong



	config. B

	2.5D

	0.077

	0.0019

	strong



	config. C

	3D

	0.0828

	0.0003

	strong



	config. D

	3D

	0.798

	0.072

	strong



	config. E

	3D

	0.457

	0.031

	strong








High dependence high grey level emphasis

9QMG
The high dependence high grey level emphasis feature emphasises
neighbouring grey level dependence counts in the lower right quadrant of
the NGLDM, where high dependence counts and high grey levels are
located. The feature is defined as:


\[F_{\mathit{ngl.hdhge}}=\frac{1}{N_s} \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} i^2 j^2 s_{ij}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	49.5

	—

	strong



	dig. phantom

	2.5D

	50.8

	—

	strong



	dig. phantom

	3D

	235

	—

	very strong



	config. A

	2D

	\(7.54 \times 10^{3}\)

	60

	strong



	config. A

	2.5D

	\(8.1 \times 10^{3}\)

	60

	strong



	config. B

	2D

	\(7.21 \times 10^{3}\)

	130

	strong



	config. B

	2.5D

	\(7.97 \times 10^{3}\)

	150

	strong



	config. C

	3D

	\(2.27 \times 10^{5}\)

	\(3 \times 10^{3}\)

	strong



	config. D

	3D

	\(9.28 \times 10^{4}\)

	\(1.3 \times 10^{3}\)

	strong



	config. E

	3D

	\(7.6 \times 10^{4}\)

	600

	strong








Grey level non-uniformity

FP8K
Grey level non-uniformity assesses the distribution of neighbouring
grey level dependence counts over the grey values. The feature value is
low when dependence counts are equally distributed along grey levels.
The feature is defined as:


\[F_{\mathit{ngl.glnu}}= \frac{1}{N_s} \sum_{i=1}^{N_g} s_{i.}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	10.2

	—

	strong



	dig. phantom

	2.5D

	37.9

	—

	strong



	dig. phantom

	3D

	37.9

	—

	very strong



	config. A

	2D

	757

	1

	strong



	config. A

	2.5D

	\(1.72 \times 10^{4}\)

	100

	strong



	config. B

	2D

	216

	3

	strong



	config. B

	2.5D

	\(4.76 \times 10^{3}\)

	50

	strong



	config. C

	3D

	\(6.42 \times 10^{3}\)

	10

	strong



	config. D

	3D

	\(1.02 \times 10^{4}\)

	300

	strong



	config. E

	3D

	\(8.17 \times 10^{3}\)

	130

	strong








Normalised grey level non-uniformity

5SPA
This is a normalised version of the grey level non-uniformity feature.
It is defined as:


\[F_{\mathit{ngl.glnu.norm}}= \frac{1}{N_s^2} \sum_{i=1}^{N_g} s_{i.}^2\]

The normalised grey level non-uniformity computed from a single 3D
NGLDM matrix is equivalent to the intensity histogram uniformity
feature [VanGriethuysen2017].










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.562

	—

	strong



	dig. phantom

	2.5D

	0.512

	—

	strong



	dig. phantom

	3D

	0.512

	—

	very strong



	config. A

	2D

	0.151

	0.003

	strong



	config. A

	2.5D

	0.15

	0.002

	strong



	config. B

	2D

	0.184

	0.001

	strong



	config. B

	2.5D

	0.174

	0.001

	strong



	config. C

	3D

	0.14

	0.003

	strong



	config. D

	3D

	0.229

	0.003

	strong



	config. E

	3D

	0.184

	0.001

	strong








Dependence count non-uniformity

Z87G
This features assesses the distribution of neighbouring grey level
dependence counts over the different dependence counts. The feature
value is low when dependence counts are equally distributed.
[Sun1983] refer to this feature as number
non-uniformity. It is defined as:


\[F_{\mathit{ngl.dcnu}}= \frac{1}{N_s} \sum_{j=1}^{N_n} s_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	3.96

	—

	strong



	dig. phantom

	2.5D

	12.4

	—

	strong



	dig. phantom

	3D

	4.86

	—

	very strong



	config. A

	2D

	709

	2

	strong



	config. A

	2.5D

	\(1.75 \times 10^{4}\)

	100

	strong



	config. B

	2D

	157

	1

	strong



	config. B

	2.5D

	\(3.71 \times 10^{3}\)

	30

	strong



	config. C

	3D

	\(2.45 \times 10^{3}\)

	60

	strong



	config. D

	3D

	\(1.84 \times 10^{3}\)

	30

	strong



	config. E

	3D

	\(2.25 \times 10^{3}\)

	30

	strong








Normalised dependence count non-uniformity

OKJI
This is a normalised version of the dependence count non-uniformity
feature. It is defined as:


\[F_{\mathit{ngl.dcnu.norm}}= \frac{1}{N_s^2} \sum_{i=1}^{N_n} s_{.j}^2\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.212

	—

	strong



	dig. phantom

	2.5D

	0.167

	—

	strong



	dig. phantom

	3D

	0.0657

	—

	very strong



	config. A

	2D

	0.175

	0.001

	strong



	config. A

	2.5D

	0.153

	0.001

	strong



	config. B

	2D

	0.179

	0.001

	strong



	config. B

	2.5D

	0.136

	0.001

	strong



	config. C

	3D

	0.0532

	0.0005

	strong



	config. D

	3D

	0.0413

	0.0003

	strong



	config. E

	3D

	0.0505

	0.0003

	strong








Dependence count percentage

6XV8
This feature measures the fraction of the number of realised
neighbourhoods and the maximum number of potential neighbourhoods.
Dependence count percentage may be completely omitted as it evaluates
to \(1\) when complete neighbourhoods are not required, as is the
case under our definition. It is defined as:


\[F_{\mathit{ngl.dc.perc}}=\frac{N_s}{N_v}\]










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	1

	—

	strong



	dig. phantom

	2.5D

	1

	—

	moderate



	dig. phantom

	3D

	1

	—

	strong



	config. A

	2D

	1

	—

	moderate



	config. A

	2.5D

	1

	—

	moderate



	config. B

	2D

	1

	—

	moderate



	config. B

	2.5D

	1

	—

	moderate



	config. C

	3D

	1

	—

	strong



	config. D

	3D

	1

	—

	strong



	config. E

	3D

	1

	—

	moderate








Grey level variance

1PFV
This feature estimates the variance in dependence counts over the grey
levels. Let \(p_{ij} = s_{ij}/N_s\) be the joint probability
estimate for finding discretised grey level \(i\) with dependence
\(j\). The feature is then defined as:


\[F_{\mathit{ngl.gl.var}}=  \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} (i-\mu)^2 p_{ij}\]

Here, \(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} i\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	2.7

	—

	strong



	dig. phantom

	2.5D

	3.05

	—

	strong



	dig. phantom

	3D

	3.05

	—

	very strong



	config. A

	2D

	31.1

	0.5

	strong



	config. A

	2.5D

	22.8

	0.6

	strong



	config. B

	2D

	25.3

	0.4

	strong



	config. B

	2.5D

	18.7

	0.2

	strong



	config. C

	3D

	81.1

	2.1

	strong



	config. D

	3D

	21.7

	0.4

	strong



	config. E

	3D

	30.4

	0.8

	strong






}



Dependence count variance

DNX2
This feature estimates the variance in dependence counts over the
different possible dependence counts. As before let
\(p_{ij} = s_{ij}/N_s\). The feature is defined as:


\[F_{\mathit{ngl.dc.var}}= \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} (j-\mu)^2 p_{ij}\]

Mean dependence count is defined as
\(\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} j\,p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	2.73

	—

	strong



	dig. phantom

	2.5D

	3.27

	—

	strong



	dig. phantom

	3D

	22.1

	—

	very strong



	config. A

	2D

	3.12

	0.02

	strong



	config. A

	2.5D

	3.37

	0.01

	strong



	config. B

	2D

	4.02

	0.05

	strong



	config. B

	2.5D

	4.63

	0.06

	strong



	config. C

	3D

	39.2

	0.1

	strong



	config. D

	3D

	63.9

	1.3

	strong



	config. E

	3D

	39.4

	1

	strong








Dependence count entropy

FCBV
This feature is referred to as entropy by
[Sun1983]. Let \(p_{ij} = s_{ij}/N_s\).
Dependence count entropy is then defined as:


\[F_{\mathit{ngl.dc.entr}} = - \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} p_{ij} \log_2 p_{ij}\]

This definition remedies an error in the definition of
[Sun1983], where the term within the logarithm is
dependence count \(s_{ij}\) instead of count probability
\(p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	2.71

	—

	strong



	dig. phantom

	2.5D

	3.36

	—

	strong



	dig. phantom

	3D

	4.4

	—

	very strong



	config. A

	2D

	5.76

	0.02

	strong



	config. A

	2.5D

	5.93

	0.02

	strong



	config. B

	2D

	5.38

	0.01

	strong



	config. B

	2.5D

	5.78

	0.01

	strong



	config. C

	3D

	7.54

	0.03

	strong



	config. D

	3D

	6.98

	0.01

	strong



	config. E

	3D

	7.06

	0.02

	strong








Dependence count energy

CAS9
This feature is called second moment by [Sun1983].
Let \(p_{ij} = s_{ij}/N_s\). Then dependence count energy is
defined as:


\[F_{\mathit{ngl.dc.energy}} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_n} p_{ij}^2\]

This definition also remedies an error in the original definition,
where squared dependence count \(s_{ij}^2\) is divided by
\(N_s\) only, thus leaving a major volume dependency. In the
definition given here, \(s_{ij}^2\) is normalised by \(N_s^2\)
through the use of count probability \(p_{ij}\).










	data

	aggr. method

	value

	tol.

	consensus





	dig. phantom

	2D

	0.17

	—

	strong



	dig. phantom

	2.5D

	0.122

	—

	strong



	dig. phantom

	3D

	0.0533

	—

	very strong



	config. A

	2D

	0.0268

	0.0004

	strong



	config. A

	2.5D

	0.0245

	0.0003

	moderate



	config. B

	2D

	0.0321

	0.0002

	strong



	config. B

	2.5D

	0.0253

	0.0001

	moderate



	config. C

	3D

	0.00789

	0.00011

	strong



	config. D

	3D

	0.0113

	0.0002

	strong



	config. E

	3D

	0.0106

	0.0001

	strong











          

      

      

    

  

    
      
          
            
  
Radiomics reporting guidelines and nomenclature

Reliable and complete reporting is necessary to ensure reproducibility
and validation of results. To help provide a complete report on image
processing and image biomarker extraction, we present the guidelines
below, as well as a nomenclature system to uniquely features.


Reporting guidelines

These guidelines are partially based on the work of
[Sollini2017N][Lambin2017][Sanduleanu2018iu][Traverso2018yr].
Additionally, guidelines are derived from the image processing and
feature calculation steps described within this document. An earlier
version was reported elsewhere
[vallieres2017responsible].


Patient









	Topic

	Modality

	Item

	Description



	Region of
interest 1

	
	1

	Describe the
region of
interest that
is being
imaged.



	Patient
preparation

	
	2a

	Describe
specific
instructions
given to
patients prior
to image
acquisition,
e.g. fasting
prior to
imaging.



	
	
	2b

	Describe
administration
of drugs to the
patient prior
to image
acquisition,
e.g. muscle
relaxants.



	
	
	2c

	Describe the
use of specific
equipment for
patient comfort
during
scanning, e.g.
ear plugs.



	Radioactive
tracer

	PET, SPECT

	3a

	Describe which
radioactive
tracer was
administered to
the patient,
e.g. 18F-FDG.



	
	PET, SPECT

	3b

	Describe the
administration
method.



	
	PET, SPECT

	3c

	Describe the
injected
activity of the
radioactive
tracer at
administration.



	
	PET, SPECT

	3d

	Describe the
uptake time
prior to image
acquisition.



	
	PET, SPECT

	3e

	Describe how
competing
substance
levels were
controlled.
2



	Contrast agent

	
	4a

	Describe which
contrast agent
was
administered to
the patient.



	
	
	4b

	Describe the
administration
method.



	
	
	4c

	Describe the
injected
quantity of
contrast agent.



	
	
	4d

	Describe the
uptake time
prior to image
acquisition.



	
	
	4e

	Describe how
competing
substance
levels were
controlled.



	Comorbidities

	
	5

	Describe if the
patients have
comorbidities
that affect
imaging. 3








Acquisition 4









	Topic

	Modality

	Item

	Description



	Acquisition
protocol

	
	6

	Describe
whether a
standard
imaging
protocol was
used, and where
its description
may be found.



	Scanner type

	
	7

	Describe the
scanner type(s)
and vendor(s)
used in the
study.



	Imaging
modality

	
	8

	Clearly state
the imaging
modality that
was used in the
study, e.g. CT,
MRI.



	Static/dynamic
scans

	
	9a

	State if the
scans were
static or
dynamic.



	
	Dynamic scans

	9b

	Describe the
acquisition
time per time
frame.



	
	Dynamic scans

	9c

	Describe any
temporal
modelling
technique that
was used.



	Scanner
calibration

	
	10

	Describe how
and when the
scanner was
calibrated.



	Patient
instructions

	
	11

	Describe
specific
instructions
given to the
patient during
acquisition,
e.g. breath
holding.



	Anatomical
motion
correction

	
	12

	Describe the
method used to
minimise the
effect of
anatomical
motion.



	Scan duration

	
	13

	Describe the
duration of the
complete scan
or the time per
bed position.



	Tube voltage

	CT

	14

	Describe the
peak kilo
voltage output
of the X-ray
source.



	Tube current

	CT

	15

	Describe the
tube current in
mA.



	Time-of-flight

	PET

	16

	State if
scanner
time-of-flight
capabilities
are used during
acquisition.



	RF coil

	MRI

	17

	Describe what
kind RF coil
used for
acquisition,
incl. vendor.



	Scanning
sequence

	MRI

	18a

	Describe which
scanning
sequence was
acquired.



	
	MRI

	18b

	Describe which
sequence
variant was
acquired.



	
	MRI

	18c

	Describe which
scan options
apply to the
current
sequence, e.g.
flow
compensation,
cardiac gating.



	Repetition time

	MRI

	19

	Describe the
time in ms
between
subsequent
pulse
sequences.



	Echo time

	MRI

	20

	Describe the
echo time in
ms.



	Echo train
length

	MRI

	21

	Describe the
number of lines
in k-space that
are acquired
per excitation
pulse.



	Inversion time

	MRI

	22

	Describe the
time in ms
between the
middle of the
inverting RF
pulse to the
middle of the
excitation
pulse.



	Flip angle

	MRI

	23

	Describe the
flip angle
produced by the
RF pulses.



	Acquisition
type

	MRI

	24

	Describe the
acquisition
type of the MRI
scan, e.g. 3D.



	k-space
traversal

	MRI

	25

	Describe the
acquisition
trajectory of
the k-space.



	Number of
averages/
excitations

	MRI

	26

	Describe the
number of times
each point in
k-space is
sampled.



	Magnetic field
strength

	MRI

	27

	Describe the
nominal
strength of the
MR magnetic
field.








Reconstruction 5









	Topic

	Modality

	Item

	Description



	In-plane
resolution

	
	28

	Describe the
distance
between pixels,
or
alternatively
the field of
view and matrix
size.



	Image slice
thickness

	
	29

	Describe the
slice
thickness.



	Image slice
spacing

	
	30

	Describe the
distance
between image
slices. 6



	Convolution
kernel

	CT

	31a

	Describe the
convolution
kernel used to
reconstruct the
image.



	
	CT

	31b

	Describe
settings
pertaining to
iterative
reconstruction
algorithms.



	Exposure

	CT

	31c

	Describe the
exposure (in
mAs) in slices
containing the
region of
interest.



	Reconstruction
method

	PET

	32a

	Describe which
reconstruction
method was
used, e.g. 3D
OSEM.



	
	PET

	32b

	Describe the
number of
iterations for
iterative
reconstruction.



	
	PET

	32c

	Describe the
number of
subsets for
iterative
reconstruction.



	Point spread
function
modelling

	PET

	33

	Describe if and
how
point-spread
function
modelling was
performed.



	Image
corrections

	PET

	34a

	Describe if and
how attenuation
correction was
performed.



	
	PET

	34b

	Describe if and
how other forms
of correction
were performed,
e.g. scatter
correction,
randoms
correction,
dead time
correction etc.



	Reconstruction
method

	MRI

	35a

	Describe the
reconstruction
method used to
reconstruct the
image from the
k-space
information.



	
	MRI

	35b

	Describe any
artifact
suppression
methods used
during
reconstruction
to suppress
artifacts due
to
undersampling
of k-space.



	Diffusion-weigh
ted
imaging

	DWI-MRI

	36

	Describe the
b-values used
for
diffusion-weigh
ting.








Image registration









	Topic

	Modality

	Item

	Description



	Registration
method

	
	37

	Describe the
method used to
register
multi-modality
imaging.








Image processing



Data conversion









	Topic

	Modality

	Item

	Description



	SUV
normalisation

	PET

	38

	Describe which
standardised
uptake value
(SUV)
normalisation
method is used.



	ADC computation

	DWI-MRI

	39

	Describe how
apparent
diffusion
coefficient
(ADC) values
were
calculated.



	Other data
conversions

	
	40

	Describe any
other
conversions
that are
performed to
generate e.g.
perfusion maps.








Post-acquisition processing









	Topic

	Modality

	Item

	Description



	Anti-aliasing

	
	41

	Describe the
method used to
deal with
anti-aliasing
when
down-sampling
during
interpolation.



	Noise
suppression

	
	42

	Describe
methods used to
suppress image
noise.



	Post-reconstruc
tion
smoothing
filter

	PET

	43

	Describe the
width of the
Gaussian filter
(FWHM) to
spatially
smooth
intensities.



	Skull stripping

	MRI (brain)

	44

	Describe method
used to perform
skull
stripping.



	Non-uniformity
correction 7

	MRI

	45

	Describe the
method and
settings used
to perform
non-uniformity
correction.



	Intensity
normalisation

	
	46

	Describe the
method and
settings used
to normalise
intensity
distributions
within a
patient or
patient cohort.



	Other
post-acquisitio
n
processing
methods

	
	47

	Describe any
other methods
that were used
to process the
image and are
not mentioned
separately in
this list.








Segmentation









	Topic

	Modality

	Item

	Description



	Segmentation
method

	
	48a

	Describe how
regions of
interest were
segmented, e.g.
manually.



	
	
	48b

	Describe the
number of
experts, their
expertise and
consensus
strategies for
manual
delineation.



	
	
	48c

	Describe
methods and
settings used
for
semi-automatic
and fully
automatic
segmentation.



	
	
	48d

	Describe which
image was used
to define
segmentation in
case of
multi-modality
imaging.



	Conversion to
mask

	
	49

	Describe the
method used to
convert
polygonal or
mesh-based
segmentations
to a
voxel-based
mask.








Image interpolation









	Topic

	Modality

	Item

	Description



	Interpolation
method

	
	50a

	Describe which
interpolation
algorithm was
used to
interpolate the
image.



	
	
	50b

	Describe how
the position of
the
interpolation
grid was
defined, e.g.
align by
center.



	
	
	50c

	Describe how
the dimensions
of the
interpolation
grid were
defined, e.g.
rounded to
nearest
integer.



	
	
	50d

	Describe how
extrapolation
beyond the
original image
was handled.



	Voxel
dimensions

	
	51

	Describe the
size of the
interpolated
voxels.



	Intensity
rounding

	CT

	52

	Describe how
fractional
Hounsfield
Units are
rounded to
integer values
after
interpolation.








ROI interpolation









	Topic

	Modality

	Item

	Description



	Interpolation
method

	
	53

	Describe which
interpolation
algorithm was
used to
interpolate the
region of
interest mask.



	Partially
masked voxels

	
	54

	Describe how
partially
masked voxels
after
interpolation
are handled.








Re-segmentation









	Topic

	Modality

	Item

	Description



	Re-segmentation
methods

	
	55

	Describe which
methods and
settings are
used to
re-segment the
ROI intensity
mask.








Discretisation









	Topic

	Modality

	Item

	Description



	Discretisation
method 8

	
	56a

	Describe the
method used to
discretise
image
intensities.



	
	
	56b

	Describe the
number of bins
(FBN) or the
bin size (FBS)
used for
discretisation.



	
	
	56c

	Describe the
lowest
intensity in
the first bin
for FBS
discretisation.
9








Image transformation









	Topic

	Modality

	Item

	Description



	Image
filter 10

	
	57

	Describe the
methods and
settings used
to filter
images, e.g.
Laplacian-of-Ga
ussian.








Image biomarker computation









	Topic

	Modality

	Item

	Description



	Biomarker set

	
	58

	Describe which
set of image
biomarkers is
computed and
refer to their
definitions or
provide these.



	IBSI compliance

	
	59

	State if the
software used
to extract the
set of image
biomarkers is
compliant with
the IBSI
benchmarks.
11



	Robustness

	
	60

	Describe how
robustness of
the image
biomarkers was
assessed, e.g.
test-retest
analysis.



	Software
availability

	
	61

	Describe which
software and
version was
used to compute
image
biomarkers.








Image biomarker computation - texture parameters









	Topic

	Modality

	Item

	Description



	Texture matrix
aggregation

	
	62

	Define how
texture-matrix
based
biomarkers were
computed from
underlying
texture
matrices.



	Distance
weighting

	
	63

	Define how CM,
RLM, NGTDM and
NGLDM weight
distances, e.g.
no weighting.



	CM symmetry

	
	64

	Define whether
symmetric or
asymmetric
co-occurrence
matrices were
computed.



	CM distance

	
	65

	Define the
(Chebyshev)
distance at
which
co-occurrence
of intensities
is determined,
e.g. 1.



	SZM linkage
distance

	
	66

	Define the
distance and
distance norm
for which
voxels with the
same intensity
are considered
to belong to
the same zone
for the purpose
of constructing
an SZM, e.g.
Chebyshev
distance of 1.



	DZM linkage
distance

	
	67

	Define the
distance and
distance norm
for which
voxels with the
same intensity
are considered
to belong to
the same zone
for the purpose
of constructing
a DZM, e.g.
Chebyshev
distance of 1.



	DZM zone
distance norm

	
	68

	Define the
distance norm
for determining
the distance of
zones to the
border of the
ROI, e.g.
Manhattan
distance.



	NGTDM distance

	
	69

	Define the
neighbourhood
distance and
distance norm
for the NGTDM,
e.g. Chebyshev
distance of 1.



	NGLDM distance

	
	70

	Define the
neighbourhood
distance and
distance norm
for the NGLDM,
e.g. Chebyshev
distance of 1.



	NGLDM
coarseness

	
	71

	Define the
coarseness
parameter for
the NGLDM, e.g.
0.








Machine learning and radiomics analysis









	Topic

	Modality

	Item

	Description



	Diagnostic and
prognostic
modelling

	
	72

	See the TRIPOD
guidelines for
reporting on
diagnostic and
prognostic
modelling.



	Comparison with
known factors

	
	73

	Describe where
performance of
radiomics
models is
compared with
known
(clinical)
factors.



	Multicollineari
ty

	
	74

	Describe where
the
multicollineari
ty
between image
biomarkers in
the signature
is assessed.



	Model
availability

	
	75

	Describe where
radiomics
models with the
necessary
pre-processing
information may
be found.



	Data
availability

	
	76

	Describe where
imaging data
and relevant
meta-data used
in the study
may be found.









Feature nomenclature

Image features may be extracted using a variety of different settings,
and may even share the same name. A feature nomenclature is thus
required. Let us take the example of differentiating the following
features: i) intensity histogram-based entropy, discretised using a
fixed bin size algorithm with 25 HU bins, extracted from a CT image;
and ii) grey level run length matrix entropy, discretised using a
fixed bin number algorithm with 32 bins, extracted from a PET image.
To refer to both as entropy would be ambiguous, whereas to add a full
textual description would be cumbersome. In the nomenclature proposed
below, the features would be called entropyIH, CT, FBS:25HU and
entropyRLM, PET, FBN:32, respectively.

Features are thus indicated by a feature name and a subscript. As the
nomenclature is designed to both concise and complete, only details for
which ambiguity may exist are to be explicitly incorporated in the
subscript. The subscript of a feature name may contain the following
items to address ambiguous naming:


	An abbreviation of the feature family (required).


	The aggregation method of a feature (optional).


	A descriptor describing the modality the feature is based on, the
specific channel (for microscopy images), the specific imaging data
(in the case of repeat imaging or delta-features) sets, conversions
(such as SUV and SUL), and/or the specific ROI. For example, one
could write PET:SUV to separate it from CT and PET:SUL features
(optional).


	Spatial filters and settings (optional).


	The interpolation algorithm and uniform interpolation grid spacing
(optional).


	The re-segmentation range and outlier filtering (optional).


	The discretisation method and relevant discretisation parameters,
i.e. number of bins or bin size (optional).


	Feature specific parameters, such as distance for some texture
features (optional).




Optional descriptors are only added to the subscript if there are
multiple possibilities. For example, if only CT data is used, adding the
modality to the subscript is not required. Nonetheless, such details
must be reported as well (see section
4.1).

The sections below have tables with permanent IBSI identifiers for
concepts that were defined within this document.


Abbreviating feature families

The following is a list of the feature families in this document and
their suggested abbreviations:








	feature family

	abbreviation

	




	morphology

	MORPH

	HCUG



	local intensity

	LI

	9ST6



	intensity-based statistics

	IS, STAT

	UHIW



	intensity histogram

	IH

	ZVCW



	intensity-volume histogram

	IVH

	P88C



	grey level co-occurrence matrix

	GLCM, CM

	LFYI



	grey level run length matrix

	GLRLM, RLM

	TP0I



	grey level size zone matrix

	GLSZM, SZM

	9SAK



	grey level distance zone matrix

	GLDZM, DZM

	VMDZ



	neighbourhood grey tone difference matrix

	NGTDM

	IPET



	neighbouring grey level dependence matrix

	NGLDM

	REK0








Abbreviating feature aggregation

The following is a list of feature families and the possible aggregation
methods:








	
	morphology, LI

	




	-,

	features are 3D by definition

	DHQ4













	
	IS, IH, IVH

	




	2D

	averaged over slices (rare)

	3IDG



	-,3D

	calculated over the volume (default)

	DHQ4













	
	GLCM, GLRLM

	




	2D:avg

	averaged over slices and directions

	BTW3



	2D:mrg, 2Dsmrg

	merged directions per slice and averaged

	SUJT



	2.5D:avg, 2.5D:dmrg

	merged per direction and averaged

	JJUI



	2.5D:mrg, 2.5D:vmrg

	merged over all slices

	ZW7Z



	3D:avg

	averaged over 3D directions

	ITBB



	3D:mrg

	merged 3D directions

	IAZD













	
	GLSZM, GLDZM, NGTDM, NGLDM

	




	2D

	averaged over slices

	8QNN



	2.5D

	merged over all slices

	62GR



	3D

	calculated from single 3D matrix

	KOBO






In the list above, ’–’ signifies an empty entry which does not need to
be added to the subscript. The following examples highlight the
nomenclature used above:


	joint maximumCM, 2D:avg: GLCM-based joint maximum feature,
calculated by averaging the feature for every in-slice GLCM.


	short runs emphasisRLM, 3D:mrg: RLM-based short runs
emphasis feature, calculated from an RLM that was aggregated by
merging the RLM of each 3D direction.


	meanIS: intensity statistical mean feature, calculated
over the 3D ROI volume.


	grey level varianceSZM, 2D: SZM-based grey level variance
feature, calculated by averaging the feature value from the SZM in
each slice over all the slices.






Abbreviating interpolation

The following is a list of interpolation methods and the suggested
notation. Note that # is the interpolation spacing, including units, and
dim is 2D for interpolation with the slice plane and 3D for volumetric
interpolation.







	interpolation method

	notation





	none

	INT:–



	nearest neighbour interpolation

	NNB:dim:#



	linear interpolation

	LIN:dim:#



	cubic convolution interpolation

	CCI:dim:#



	cubic spline interpolation

	CSI:dim:#, SI3:dim:#






The dimension attribute and interpolation spacing may be omitted if this
is clear from the context. The following examples highlight the
nomenclature introduced above:


	meanIS, LIN:2D:2mm: intensity statistical mean feature,
calculated after bilinear interpolation with the slice planes to
uniform voxel sizes of 2mm.


	meanIH, NNB:3D:1mm: intensity histogram mean feature,
calculated after trilinear interpolation to uniform voxel sizes of
1mm.


	joint maximumCM, 2D:mrg, CSI:2D:2mm: GLCM-based joint
maximum feature, calculated by first merging all GLCM within a slice
to single GLCM, calculating the feature and then averaging the
feature values over the slices. GLCMs were determined in the image
interpolated within the slice plane to 2 \(\times\) 2mm voxels
using cubic spline interpolation.






Describing re-segmentation

Re-segmentation can be noted as follows:








	re-segmentation method

	notation

	




	none

	RS:–

	


	range

	RS:[#,#]

	USB3



	outlier filtering

	RS:#\(\sigma\)

	7ACA






In the table above # signify numbers. A re-segmentation range can be
half-open, i.e. RS:[#,\(\infty\)). Re-segmentation methods may be
combined, i.e. both range and outlier filtering methods may be used.
This is noted as RS:[#,#]+#\(\sigma\) or
RS:#\(\sigma\)+[#,#]. The following are examples of the
application of the above notation:


	meanIS, CT, RS:[-200,150]: intensity statistical mean
feature, based on an ROI in a CT image that was re-segmented within a
[-200,150] HU range.


	meanIS, PET:SUV, RS:[3,∞): intensity
statistical mean feature, based on an ROI in a PET image with SUV
values, that was re-segmented to contain only SUV of 3 and above.


	meanIS, MRI:T1, RS:3σ: intensity statistical
mean feature, based on an ROI in a T1-weighted MR image where the
ROI was re-segmented by removing voxels with an intensity outside a
\(\mu \pm 3\sigma\) range.






Abbreviating discretisation

The following is a list of discretisation methods and the suggested
notation. Note that # is the value of the relevant discretisation
parameter, e.g. number of bins or bin size, including units.








	discretisation method

	notation

	




	none

	DIS:–

	


	fixed bin size

	FBS:#

	Q3RU



	fixed bin number

	FBN:#

	K15C



	histogram equalisation

	EQ:#

	


	Lloyd-Max, minimum mean squared

	LM:#, MMS:#

	





In the table above, # signify numbers such as the number of bins or
their width. Histogram equalisation of the ROI intensities can be
performed before the “none”, “fixed bin size”, “fixed bin number” or
“Lloyd-Max, minimum mean squared” algorithms defined above, with #
specifying the number of bins in the histogram to be equalised. The
following are examples of the application of the above notation:


	meanIH,PET:SUV,RS[0,∞],FBS:0.2: intensity
histogram mean feature, based on an ROI in a SUV-PET image, with
bin-width of 0.2 SUV, and binning from 0.0 SUV.


	grey level varianceSZM,MR:T1,RS:3σ,FBN:64:
size zone matrix-based grey level variance feature, based on an ROI
in a T1-weighted MR image, with \(3\sigma\) re-segmentation and
subsequent binning into 64 bins.






Abbreviating feature-specific parameters

Some features and feature families require additional parameters, which
may be varied. These are the following:








	
	GLCM

	




	
	Co-occurrence matrix symmetry

	


	-, SYM

	symmetrical co-occurrence matrices

	


	ASYM

	asymmetrical co-occurrence matrices (not recommended)

	


	
	Distance

	


	δ:#, δ-∞:#

	Chebyshev (\(\ell_{∞}\)) norm with distance # (default)

	PVMT



	δ-2:#

	Euclidean (\(\ell_{2}\)) norm with distance #

	G9EV



	δ-1:#

	Manhattan (\(\ell_{1}\)) norm with distance #

	LIFZ



	
	Distance Weighting

	


	-,w:1

	no weighting (default)

	


	w:f

	weighting with function \(f\)

	












	
	GLRLM

	




	
	distance weighting

	


	-,w:1

	no weighting (default)

	


	w:f

	weighting with function \(f\)

	












	
	GLSZM

	




	
	Linkage distance

	


	δ:#, δ-∞:#

	Chebyshev (\(\ell_{∞}\)) norm with distance # (default)

	PVMT



	δ-2:#

	Euclidean (\(\ell_{2}\)) norm with distance #

	G9EV



	δ-1:#

	Manhattan (\(\ell_{1}\)) norm with distance #

	LIFZ













	
	GLDZM

	




	
	Linkage distance

	


	δ:#, δ-∞:#

	Chebyshev (\(\ell_{∞}\)) norm with distance # (default)

	PVMT



	δ-2:#

	Euclidean (\(\ell_{2}\)) norm with distance #

	G9EV



	δ-1:#

	Manhattan (\(\ell_{1}\)) norm with distance #

	LIFZ



	
	zone distance norm

	


	l-∞:#

	Chebyshev (\(\ell_{∞}\)) norm

	PVMT



	l-2:#

	Euclidean (\(\ell_{2}\)) norm

	G9EV



	-,l-1:#

	Manhattan (\(\ell_{1}\)) norm (default)

	LIFZ













	
	NGTDM

	




	
	distance

	


	δ:#, δ-∞:#

	Chebyshev (\(\ell_{∞}\)) norm with distance # (default)

	PVMT



	δ-2:#

	Euclidean (\(\ell_{2}\)) norm with distance #

	G9EV



	δ-1:#

	Manhattan (\(\ell_{1}\)) norm with distance #

	LIFZ



	
	weighting

	


	-,w:1

	no weighting (default)

	


	w:f

	weighting with function f

	












	
	NGLDM

	




	
	dependence coarseness

	


	α:#

	dependence coarseness parameter with value #

	


	
	distance

	


	δ:#, δ-∞:#

	Chebyshev (\(\ell_{∞}\)) norm with distance # (default)

	PVMT



	δ-2:#

	Euclidean (\(\ell_{2}\)) norm with distance #

	G9EV



	δ-1:#

	Manhattan (\(\ell_{1}\)) norm with distance #

	LIFZ



	
	weighting

	


	-,w:1

	no weighting (default)

	


	w:f

	weighting with function \(f\)

	





In the above tables, # represents numbers.


	1

	Also referred to as volume of interest.



	2

	An example is glucose present in the blood which competes with the
uptake of 18F-FDG tracer in tumour tissue. To reduce competition with
the tracer, patients are usually asked to fast for several hours and
a blood glucose measurement may be conducted prior to tracer
administration.



	3

	An example of a comorbidity that may affect image quality in 18F-FDG
PET scans are type I and type II diabetes melitus, as well as kidney
failure.



	4

	Many acquisition parameters may be extracted from DICOM header
meta-data, or calculated from them.



	5

	Many reconstruction parameters may be extracted from DICOM header
meta-data.



	6

	Spacing between image slicing is commonly, but not necessarily, the
same as the slice thickness.



	7

	Also known as bias-field correction.



	8

	Discretisation may be performed separately to create intensity-volume
histograms. If this is indeed the case, this should be described as
well.



	9

	This is typically set by range re-segmentation.



	10

	The IBSI has not introduced image transformation into the
standardised image processing scheme, and is in the process of
benchmarking various common filters. This section may therefore be
expanded in the future.



	11

	A software is compliant if and only if it is able to reproduce the
image biomarker benchmarks for the digital phantom and for one or
more image processing configurations using the radiomics CT phantom.
Reviewers may demand that you provide the IBSI compliance spreadsheet
for your software.










          

      

      

    

  

    
      
          
            
  
Reference data sets

Reference values for features were obtained using a digital image
phantom and the CT image of a lung cancer patient, which are described
below. The same data sets can be used to verify radiomics software
implementations. The data sets themselves may be found here:
https://github.com/theibsi/data_sets.


Digital phantom

A small digital phantom was developed to derive image features manually
and compare these values with values obtained from radiomics software
implementations. The phantom is shown in
Fig. 20. The phantom has the following
characteristics:


	The phantom consists of \(5 \times 4 \times 4\) \((x,y,z)\)
voxels.


	A slice consists of the voxels in \((x,y)\) plane for a
particular slice at position \(z\). Slices are therefore stacked
in the \(z\) direction.


	Voxels are \(2.0 \times 2.0 \times 2.0\) mm in size.


	Not all voxels are included in the region of interest. Several
excluded voxels are located on the outside of the ROI, and one
internal voxel was excluded as well. Voxels excluded from the ROI are
shown in blue in Fig. 20.


	Some intensities are not present in the phantom. Notably, grey levels
\(2\) and \(5\) are absent. \(1\) is the lowest grey
level present in the ROI, and \(6\) the highest.





Computing image features

The digital phantom was designed to not require image processing prior
to calculating the features. Thus, feature calculation is done directly
on the phantom itself. The following should be taken into account for
calculating image features:


	Discretisation is not required. All features are to be calculated
using the phantom as it is. Alternatively, one could use a fixed bin
size discretisation of 1 or fixed bin number discretisation of 6
bins, which does not alter the contents of the phantom.


	Grey level co-occurrence matrices are symmetrical and calculated for
(Chebyshev) distance \(\delta=1\).


	Neighbouring grey level dependence and neighbourhood grey tone
difference matrices are likewise calculated for (Chebyshev) distance
\(\delta=1\). Additionally, the neighbouring grey level
dependence coarseness parameter has the value \(\alpha=0\).


	Because discretisation is lacking, most intensity-based statistical
features will match their intensity histogram-based analogues in
value.


	The ROI morphological and intensity masks are identical for the
digital phantom, due to lack of re-segmentation.





[image: _images/testVolumev3.png]

Fig. 20 Exploded view of the test volume. The number in each voxel
corresponds with its grey level. Blue voxels are excluded from the
region of interest. The coordinate system is so that \(x\)
increases from left to right, \(y\) increases from back to front
and \(z\) increases from top to bottom, as is indicated by the
axis definition in the top-left.






Lung cancer CT image

A small data set of CT images from four non-small-cell lung carcinoma
patients was made publicly available to serve as radiomics phantoms
(DOI:10.17195/candat.2016.08.1) [http://dx.doi.org/10.17195/candat.2016.08.1].
We use the image for the first patient (PAT1) to obtain feature
reference values for different configurations of the image processing
scheme, as detailed below.

The CT image set is stored as a stack of slices in DICOM format. The
image slices can be identified by the DCM_IMG prefix. The gross
tumour volume (GTV) was delineated and is used as the region of interest
(ROI). Contour information is stored as an RT structure set in the DICOM
file starting with DCM_RS. For broader use, both the DICOM set
and segmentation mask have been converted to the NIfTI format. When
using the data in NIfTI format, both image stacks should be
converted to (at least) 32-bit floating point and rounded to the nearest
integer before further processing.

We defined five image processing configurations to test different image
processing methods, see Configurations. While most settings are
self-explanatory, there are several aspects that require some attention.
Configurations are divided in 2D and 3D approaches. For the 2D
configurations (A, B), image interpolation is conducted within the
slice, and likewise texture features are extracted from the in-slice
plane, and not volumetrically (3D). For the 3D configurations (C-E)
interpolation is conducted in three dimensions, and features are
likewise extracted volumetrically. Discretisation is moreover required
for texture, intensity histogram and intensity-volume histogram
features, and both fixed bin number and fixed bin size algorithms
are tested.


Notes on interpolation

Interpolation has a major influence on feature values. Different
implementations of the same interpolation method may ostensibly provide
the same functionality, but may use different interpolation grids. It is
therefore recommended to read the documentation of the particular
implementation to assess if the implementation allows or implements the
following:


	The spatial origin of the original (input) grid in world coordinates
matches the DICOM origin by definition.


	The size of the interpolation grid is determined by rounding the
fractional grid size towards infinity, i.e. a ceiling operation. This
prevents the interpolation grid from disappearing for very small
images, but is otherwise an arbitrary choice.


	The centers of the interpolation and original image grids should be
aligned, i.e. the interpolation grid is centered on the center of the
original image grid. This prevents spacing inconsistencies in the
interpolation grid and avoids potential issues with grid orientation.


	The extent of the interpolation grid is, by definition, always equal
or larger than that of the original grid. This means that intensities
at the grid boundary are extrapolated. To facilitate this process,
the image should be sufficiently padded with voxels that take on the
nearest boundary intensity.


	The floating point representation of the image and the ROI masks
affects interpolation precision, and consequentially feature values.
Image and ROI masks should at least be represented at full precision
(32-bit) to avoid rounding errors. One example is the unintended
exclusion of voxels from the interpolated ROI mask, which occurs when
interpolation yields 0.4999…instead of 0.5. When images and ROI masks
are converted to full precision from lower precision (e.g.
16-bit), values may require rounding if the original data were
integer values, such as Hounsfield Units or the ROI mask labels.




More details are provided in the Interpolation section.



Diagnostic features

Identifying issues with an implementation of the image processing
sequence may be challenging. Multiple steps follow one another and
differences propagate. Hence we define a small number of diagnostic
features that describe how the image and ROI masks change with each
image processing step. These diagnostic features also have reference
values that may be found in IBSI compliance check spreadsheet.


Initial image stack.

The following features may be used to describe the initial image stack
(i.e. after loading image data for processing):


	Image dimensions. This describes the image dimensions in voxels
along the different image axes.


	Voxel dimensions. This describes the voxel dimensions in mm. The
dimension along the z-axis is equal to the distance between the
origin voxels of two adjacent slices, and is generally equal to the
slice thickness.


	Mean intensity. This is the average intensity within the entire
image.


	Minimum intensity. This is the lowest intensity within the entire
image.


	Maximum intensity. This is the highest intensity within the entire
image.






Interpolated image stack.

The above features may also be used to describe the image stack after
image interpolation.



Initial region of interest.

The following descriptors are used to describe the region of interest
(ROI) directly after segmentation of the image:


	ROI intensity mask dimensions. This describes the dimensions, in
voxels, of the ROI intensity mask.


	ROI intensity mask bounding box dimensions. This describes the
dimensions, in voxels, of the bounding box of the ROI intensity mask.


	ROI morphological mask bounding box dimensions. This describes the
dimensions, in voxels, of the bounding box of the ROI morphological
mask.


	Number of voxels in the ROI intensity mask. This describes the
number of voxels included in the ROI intensity mask.


	Number of voxels in the ROI morphological mask. This describes the
number of voxels included in the ROI intensity mask.


	Mean ROI intensity. This is the mean intensity of image voxels
within the ROI intensity mask.


	Minimum ROI intensity. This is the lowest intensity of image voxels
within the ROI intensity mask.


	Maximum ROI intensity. This is the highest intensity of image
voxels within the ROI intensity mask.






Interpolated region of interest.

The same features can be used to describe the ROI after interpolation of
the ROI mask.



Re-segmented region of interest.

Again, the same features as above can be used to describe the ROI after
re-segmentation.




Computing image features

Unlike the digital phantom, the lung cancer CT image does require
additional image processing, which is done according to the processing
configurations described in the tables below. The following should be
taken into account when calculating image features:


	Grey level co-occurrence matrices are symmetrical and calculated for
(Chebyshev) distance \(\delta=1\).


	Neighbouring grey level dependence and neighbourhood grey tone
difference matrices are likewise calculated for (Chebyshev) distance
\(\delta=1\). Additionally, the neighbouring grey level
dependence coarseness parameter \(\alpha=0\).


	Intensity-based statistical features and their intensity
histogram-based analogues will differ in value due to discretisation,
in contrast to the same features for the digital phantom.


	Due to re-segmentation, the ROI morphological and intensity masks are
not identical.


	Calculation of IVH feature: since by default CT contains calibrated
and discrete intensities, no separate discretisation prior to the
calculation of intensity-volume histogram features is required. This
is the case for configurations A, B and D (i.e. “calibrated intensity
units – discrete case”). However, for configurations C and E, we
re-discretise the ROI intensities prior to calculation of
intensity-volume histogram features to allow for testing of of these
methods. Configuration C simulates the “calibrated intensity units –
continuous case”, while configuration E simulates the “arbitrary
intensity units” case where the re-segmentation range is not used.
For details, please consult the Intensity-volume histogram features section.






Configurations

Below are tables for the different configurations for image processing of the lung cancer CT Phantom. For details,
refer to the corresponding sections in chapter Image processing.



Configuration A








	Parameter

	
	Config A





	sample identifier

	
	PAT1



	ROI name

	
	GTV-1



	slice-wise or single
volume (3D)

	
	2D



	interpolation

	
	no



	
	resampled voxel
spacing (mm)

	–



	
	interpolation method

	–



	
	intensity rounding

	–



	
	ROI interpolation
method

	–



	
	ROI partial mask
volume

	–



	re-segmentation

	
	


	
	range (HU)

	[−500, 400]



	
	outlier filtering

	no



	discretisation

	
	


	
	texture and IH

	FBS: 25HU



	
	IVH

	no



	texture parameters

	
	


	
	GLCM, NGTDM, NGLDM
distance

	1



	
	GLSZM, GLDZM linkage
distance

	1



	
	NGLDM coarseness

	0








Configuration B








	Parameter

	
	Config B





	sample identifier

	
	PAT1



	ROI name

	
	GTV-1



	slice-wise or single
volume (3D)

	
	2D



	interpolation

	
	yes



	
	resampled voxel
spacing (mm)

	2 × 2 (axial)



	
	interpolation method

	bilinear



	
	intensity rounding

	nearest integer



	
	ROI interpolation
method

	bilinear



	
	ROI partial mask
volume

	0.5



	re-segmentation

	
	


	
	range (HU)

	[−500, 400]



	
	outlier filtering

	no



	discretisation

	
	


	
	texture and IH

	FBN: 32 bins



	
	IVH

	no



	texture parameters

	
	


	
	GLCM, NGTDM, NGLDM
distance

	1



	
	GLSZM, GLDZM linkage
distance

	1



	
	NGLDM coarseness

	0








Configuration C








	Parameter

	
	Config C





	sample identifier

	
	PAT1



	ROI name

	
	GTV-1



	slice-wise or single
volume (3D)

	
	3D



	interpolation

	
	yes



	
	resampled voxel
spacing (mm)

	2 × 2× 2



	
	interpolation method

	trilinear



	
	intensity rounding

	nearest integer



	
	ROI interpolation
method

	trilinear



	
	ROI partial mask
volume

	0.5



	re-segmentation

	
	


	
	range (HU)

	[−1000, 400]



	
	outlier filtering

	no



	discretisation

	
	


	
	texture and IH

	FBS: 25 HU



	
	IVH

	FBS: 2.5 HU



	texture parameters

	
	


	
	GLCM, NGTDM, NGLDM
distance

	1



	
	GLSZM, GLDZM linkage
distance

	1



	
	NGLDM coarseness

	0








Configuration D








	Parameter

	
	Config D





	sample identifier

	
	PAT1



	ROI name

	
	GTV-1



	slice-wise or single
volume (3D)

	
	3D



	interpolation

	
	yes



	
	resampled voxel
spacing (mm)

	2 × 2× 2



	
	interpolation method

	trilinear



	
	intensity rounding

	nearest integer



	
	ROI interpolation
method

	trilinear



	
	ROI partial mask
volume

	0.5



	re-segmentation

	
	


	
	range (HU)

	no



	
	outlier filtering

	3σ



	discretisation

	
	


	
	texture and IH

	FBN: 32 bins



	
	IVH

	no



	texture parameters

	
	


	
	GLCM, NGTDM, NGLDM
distance

	1



	
	GLSZM, GLDZM linkage
distance

	1



	
	NGLDM coarseness

	0








Configuration E








	Parameter

	
	Config E





	sample identifier

	
	PAT1



	ROI name

	
	GTV-1



	slice-wise or single
volume (3D)

	
	3D



	interpolation

	
	yes



	
	resampled voxel
spacing (mm)

	2 × 2× 2



	
	interpolation method

	tricubic spline



	
	intensity rounding

	nearest integer



	
	ROI interpolation
method

	trilinear



	
	ROI partial mask
volume

	0.5



	re-segmentation

	
	


	
	range (HU)

	[-1000,400]



	
	outlier filtering

	3σ



	discretisation

	
	


	
	texture and IH

	FBN: 32 bins



	
	IVH

	1000 bins



	texture parameters

	
	


	
	GLCM, NGTDM, NGLDM
distance

	1



	
	GLSZM, GLDZM linkage
distance

	1



	
	NGLDM coarseness

	0






ROI: region of interest; HU: Hounsfield Unit; IH: intensity histogram;
FBS: fixed bin size; FBN: fixed bin number; IVH: intensity-volume
histogram; GLCM: grey level co-occurrence matrix; NGTDM: neighborhood
grey tone difference matrix; NGLDM: neighbouring grey level dependence
matrix; GLSZM: grey level size zone matrix; GLDZM: grey level distance
zone matrix.






          

      

      

    

  

    
      
          
            
  
Digital phantom texture matrices

This section contains the texture matrices extracted from the digital
phantom for reference purposes.


Grey level co-occurrence matrix (2D)
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3cm

\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
x indicates the direction in \((x,y,z)\) coordinates.
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\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
x indicates the direction in \((x,y,z)\) coordinates.









	i

	j

	n





	1.0

	1.0

	10



	1.0

	3.0

	2



	1.0

	4.0

	1



	1.0

	6.0

	2



	3.0

	1.0

	2



	4.0

	1.0

	1



	4.0

	6.0

	1



	6.0

	1.0

	2



	6.0

	4.0

	1









3cm

\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
x indicates the direction in \((x,y,z)\) coordinates.
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\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
x indicates the direction in \((x,y,z)\) coordinates.
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Grey level co-occurrence matrix (2D, merged)
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\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
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\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
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\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
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\(xy\) plane (2D) of the digital phantom using Chebyshev distance 1.
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Grey level co-occurrence matrix (3D)
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Table 78 x: (0,1,1)
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Table 79 x: (0,1,1)
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Table 80 x: (0,1,1)
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(3D) from the digital phantom using Chebyshev distance 1. x
indicates the direction in \((x,y,z)\) coordinates.
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Grey level co-occurrence matrix (3D, merged)
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volumetrically (3D) from the digital phantom using Chebyshev distance 1.









	i

	j

	n





	1.0

	1.0

	536



	1.0

	3.0

	14



	1.0

	4.0

	105



	1.0

	6.0

	61



	3.0

	1.0

	14



	3.0

	4.0

	5



	3.0

	6.0

	6



	4.0

	1.0

	105



	4.0

	3.0

	5



	4.0

	4.0

	64



	4.0

	6.0

	28



	6.0

	1.0

	61



	6.0

	3.0

	6



	6.0

	4.0

	28



	6.0

	6.0

	16











Grey level run length matrix (2D)
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	1.0

	2.0



	6.0

	1.0

	1.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	2.0

	1.0



	1.0

	3.0

	3.0



	1.0

	4.0

	1.0



	4.0

	1.0

	2.0



	6.0

	1.0

	1.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	7.0



	1.0

	2.0

	1.0



	4.0

	1.0

	5.0



	4.0

	3.0

	1.0



	6.0

	1.0

	3.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	6.0



	1.0

	2.0

	3.0



	3.0

	1.0

	1.0



	4.0

	1.0

	4.0



	6.0

	1.0

	2.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	5.0



	1.0

	2.0

	3.0



	1.0

	3.0

	1.0



	4.0

	1.0

	2.0



	6.0

	1.0

	1.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	3.0



	1.0

	2.0

	3.0



	1.0

	3.0

	2.0



	4.0

	1.0

	2.0



	6.0

	1.0

	1.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	5.0



	1.0

	2.0

	2.0



	4.0

	1.0

	4.0



	4.0

	2.0

	2.0



	6.0

	1.0

	3.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	2.0



	1.0

	2.0

	5.0



	3.0

	1.0

	1.0



	4.0

	2.0

	2.0



	6.0

	1.0

	2.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	1.0



	1.0

	2.0

	4.0



	1.0

	5.0

	1.0



	4.0

	2.0

	1.0



	6.0

	1.0

	1.0









3cm

slice: 4 of 4









	i

	r

	n





	1.0

	1.0

	1.0



	1.0

	2.0

	2.0



	1.0

	5.0

	2.0



	4.0

	2.0

	1.0



	6.0

	1.0

	1.0









3cm

plane (2D) of the digital phantom. x indicates the direction in
\((x,y,z)\) coordinates.









	i

	r

	n





	1.0

	1.0

	3.0



	1.0

	2.0

	3.0



	4.0

	1.0

	6.0



	4.0

	2.0

	1.0



	6.0

	1.0

	3.0









3cm

plane (2D) of the digital phantom. x indicates the direction in
\((x,y,z)\) coordinates.









	i

	r

	n





	1.0

	1.0

	2.0



	1.0

	2.0

	5.0



	3.0

	1.0

	1.0



	4.0

	1.0

	4.0



	6.0

	1.0

	2.0









3cm

plane (2D) of the digital phantom. x indicates the direction in
\((x,y,z)\) coordinates.









	i

	r

	n





	1.0

	1.0

	3.0



	1.0

	2.0

	4.0



	1.0

	3.0

	1.0



	4.0

	1.0

	2.0



	6.0

	1.0

	1.0









3cm

plane (2D) of the digital phantom. x indicates the direction in
\((x,y,z)\) coordinates.









	i

	r

	n





	1.0

	1.0

	2.0



	1.0

	2.0

	3.0



	1.0

	3.0

	1.0



	1.0

	4.0

	1.0



	4.0

	1.0

	2.0



	6.0

	1.0

	1.0











Grey level run length matrix (2D, merged)

3cm

\(xy\) plane (2D) of the digital phantom.









	i

	r

	n





	1.0

	1.0

	16.0



	1.0

	2.0

	8.0



	1.0

	4.0

	1.0



	4.0

	1.0

	17.0



	4.0

	2.0

	6.0



	4.0

	3.0

	1.0



	6.0

	1.0

	9.0



	6.0

	3.0

	1.0









3cm

\(xy\) plane (2D) of the digital phantom.









	i

	r

	n





	1.0

	1.0

	10.0



	1.0

	2.0

	15.0



	1.0

	4.0

	2.0



	3.0

	1.0

	4.0



	4.0

	1.0

	12.0



	4.0

	2.0

	2.0



	6.0

	1.0

	8.0









3cm

\(xy\) plane (2D) of the digital phantom.









	i

	r

	n





	1.0

	1.0

	10.0



	1.0

	2.0

	11.0



	1.0

	3.0

	5.0



	1.0

	4.0

	1.0



	1.0

	5.0

	1.0



	4.0

	1.0

	6.0



	4.0

	2.0

	1.0



	6.0

	1.0

	4.0









3cm

\(xy\) plane (2D) of the digital phantom.









	i

	r

	n





	1.0

	1.0

	6.0



	1.0

	2.0

	9.0



	1.0

	3.0

	6.0



	1.0

	4.0

	2.0



	1.0

	5.0

	2.0



	4.0

	1.0

	6.0



	4.0

	2.0

	1.0



	6.0

	1.0

	4.0











Grey level run length matrix (3D)

3cm


Table 90 x: (0,1,1)






	i

	r

	n





	1.0

	1.0

	1.0



	1.0

	2.0

	6.0



	1.0

	3.0

	3.0



	1.0

	4.0

	7.0



	3.0

	1.0

	1.0



	4.0

	1.0

	4.0



	4.0

	2.0

	2.0



	4.0

	4.0

	2.0



	6.0

	1.0

	1.0



	6.0

	2.0

	1.0



	6.0

	4.0

	1.0






3cm


Table 91 x: (0,1,1)






	i

	r

	n





	1.0

	1.0

	11.0



	1.0

	2.0

	15.0



	1.0

	3.0

	3.0



	3.0

	1.0

	1.0



	4.0

	1.0

	14.0



	4.0

	2.0

	1.0



	6.0

	1.0

	5.0



	6.0

	2.0

	1.0






3cm


Table 92 x: (0,1,1)






	i

	r

	n





	1.0

	1.0

	2.0



	1.0

	2.0

	5.0



	1.0

	3.0

	6.0



	1.0

	4.0

	5.0



	3.0

	1.0

	1.0



	4.0

	1.0

	10.0



	4.0

	2.0

	3.0



	6.0

	1.0

	4.0



	6.0

	3.0

	1.0






3cm


Table 93 x: (0,1,1)






	i

	r

	n





	1.0

	1.0

	10.0



	1.0

	2.0

	5.0



	1.0

	3.0

	6.0



	1.0

	4.0

	3.0



	3.0

	1.0

	1.0



	4.0

	1.0

	14.0



	4.0

	2.0

	1.0



	6.0

	1.0

	5.0



	6.0

	2.0

	1.0






3cm


Table 94 x: (1,0,-1)






	i

	r

	n





	1.0

	1.0

	22.0



	1.0

	2.0

	11.0



	1.0

	3.0

	2.0



	3.0

	1.0

	1.0



	4.0

	1.0

	16.0



	6.0

	1.0

	7.0






3cm


Table 95 x: (1,0,-1)






	i

	r

	n





	1.0

	1.0

	21.0



	1.0

	2.0

	10.0



	1.0

	3.0

	3.0



	3.0

	1.0

	1.0



	4.0

	1.0

	13.0



	4.0

	3.0

	1.0



	6.0

	1.0

	7.0






3cm


Table 96 x: (1,0,-1)






	i

	r

	n





	1.0

	1.0

	30.0



	1.0

	2.0

	10.0



	3.0

	1.0

	1.0



	4.0

	1.0

	14.0



	4.0

	2.0

	1.0



	6.0

	1.0

	7.0






3cm


Table 97 x: (1,0,-1)






	i

	r

	n





	1.0

	1.0

	16.0



	1.0

	2.0

	12.0



	1.0

	3.0

	2.0



	1.0

	4.0

	1.0



	3.0

	1.0

	1.0



	4.0

	1.0

	8.0



	4.0

	2.0

	4.0



	6.0

	1.0

	7.0






3cm


Table 98 x: (1,1,0)






	i

	r

	n





	1.0

	1.0

	9.0



	1.0

	2.0

	13.0



	1.0

	5.0

	3.0



	3.0

	1.0

	1.0



	4.0

	1.0

	4.0



	4.0

	2.0

	6.0



	6.0

	1.0

	7.0






3cm


Table 99 x: (1,1,0)






	i

	r

	n





	1.0

	1.0

	19.0



	1.0

	2.0

	12.0



	1.0

	3.0

	1.0



	1.0

	4.0

	1.0



	3.0

	1.0

	1.0



	4.0

	1.0

	8.0



	4.0

	2.0

	4.0



	6.0

	1.0

	7.0






3cm


Table 100 x: (1,1,0)






	i

	r

	n





	1.0

	1.0

	20.0



	1.0

	2.0

	12.0



	1.0

	3.0

	2.0



	3.0

	1.0

	1.0



	4.0

	1.0

	16.0



	6.0

	1.0

	7.0






3cm


Table 101 x: (1,1,0)






	i

	r

	n





	1.0

	1.0

	10.0



	1.0

	2.0

	15.0



	1.0

	3.0

	2.0



	1.0

	4.0

	1.0



	3.0

	1.0

	1.0



	4.0

	1.0

	14.0



	4.0

	2.0

	1.0



	6.0

	1.0

	7.0






3cm

from the digital phantom. x indicates the direction in
\((x,y,z)\) coordinates.









	i

	r

	n





	1.0

	1.0

	19.0



	1.0

	2.0

	14.0



	1.0

	3.0

	1.0



	3.0

	1.0

	1.0



	4.0

	1.0

	14.0



	4.0

	2.0

	1.0



	6.0

	1.0

	7.0











Grey level run length matrix (3D, merged)

3cm

(3D) from the digital phantom.









	i

	r

	n





	1.0

	1.0

	190.0



	1.0

	2.0

	140.0



	1.0

	3.0

	31.0



	1.0

	4.0

	18.0



	1.0

	5.0

	3.0



	3.0

	1.0

	13.0



	4.0

	1.0

	149.0



	4.0

	2.0

	24.0



	4.0

	3.0

	1.0



	4.0

	4.0

	2.0



	6.0

	1.0

	78.0



	6.0

	2.0

	3.0



	6.0

	3.0

	1.0



	6.0

	4.0

	1.0











Grey level size zone matrix (2D)

3cm

plane (2D) of the digital phantom.









	i

	s

	n





	1.0

	3

	1



	1.0

	6

	1



	4.0

	2

	1



	4.0

	6

	1



	6.0

	3

	1









3cm

plane (2D) of the digital phantom.









	i

	s

	n





	1.0

	4

	1



	1.0

	8

	1



	3.0

	1

	1



	4.0

	2

	2



	6.0

	1

	2









3cm

plane (2D) of the digital phantom.









	i

	s

	n





	1.0

	14

	1



	4.0

	2

	1



	6.0

	1

	1









3cm

plane (2D) of the digital phantom.









	i

	s

	n





	1.0

	15

	1



	4.0

	2

	1



	6.0

	1

	1











Grey level size zone matrix (3D)

3cm

from the digital phantom.









	i

	s

	n





	1.0

	50

	1



	3.0

	1

	1



	4.0

	2

	1



	4.0

	14

	1



	6.0

	7

	1











Grey level distance zone matrix (2D)

3cm

\(xy\) plane (2D) of the digital phantom.









	i

	d

	n





	1.0

	1.0

	2



	4.0

	1.0

	2



	6.0

	1.0

	1









3cm

\(xy\) plane (2D) of the digital phantom.









	i

	d

	n





	1.0

	1.0

	2



	3.0

	2.0

	1



	4.0

	1.0

	2



	6.0

	1.0

	1



	6.0

	2.0

	1









3cm

\(xy\) plane (2D) of the digital phantom.









	i

	d

	n





	1.0

	1.0

	1



	4.0

	1.0

	1



	6.0

	1.0

	1









3cm

\(xy\) plane (2D) of the digital phantom.









	i

	d

	n





	1.0

	1.0

	1



	4.0

	1.0

	1



	6.0

	1.0

	1











Grey level distance zone matrix (3D)

3cm

from the digital phantom.









	i

	d

	n





	1.0

	1.0

	1



	3.0

	1.0

	1



	4.0

	1.0

	2



	6.0

	1.0

	1











Neighbourhood grey tone difference matrix (2D)

3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1.









	i

	s

	n





	1.0

	14.575

	9



	4.0

	5.775

	8



	6.0

	7.325

	3









3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1.









	i

	s

	n





	1.0

	11.928571

	12



	3.0

	0.375000

	1



	4.0

	4.800000

	4



	6.0

	8.000000

	2









3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1.









	i

	s

	n





	1.0

	7.985714

	14



	4.0

	4.650000

	2



	6.0

	5.000000

	1









3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1.









	i

	s

	n





	1.0

	7.582143

	15



	4.0

	4.650000

	2



	6.0

	5.000000

	1











Neighbourhood grey tone difference matrix (3D)

3cm

volumetrically (3D) from the digital phantom using Chebyshev distance 1.









	i

	s

	n





	1.0

	39.946954

	50



	3.0

	0.200000

	1



	4.0

	20.825401

	16



	6.0

	24.127005

	7











Neighbouring grey level dependence matrix (2D)

3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1 and coarseness 0.









	i

	j

	s





	1.0

	2.0

	3



	1.0

	3.0

	1



	1.0

	4.0

	3



	1.0

	5.0

	2



	4.0

	2.0

	2



	4.0

	3.0

	4



	4.0

	4.0

	2



	6.0

	2.0

	2



	6.0

	3.0

	1









3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1 and coarseness 0.









	i

	j

	s





	1.0

	3.0

	2



	1.0

	4.0

	6



	1.0

	6.0

	4



	3.0

	1.0

	1



	4.0

	2.0

	4



	6.0

	1.0

	2









3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1 and coarseness 0.









	i

	j

	s





	1.0

	3.0

	1



	1.0

	4.0

	5



	1.0

	5.0

	3



	1.0

	6.0

	3



	1.0

	7.0

	2



	4.0

	2.0

	2



	6.0

	1.0

	1









3cm

the \(xy\) plane (2D) of the digital phantom using Chebyshev
distance 1 and coarseness 0.









	i

	j

	s





	1.0

	3.0

	1



	1.0

	4.0

	3



	1.0

	5.0

	3



	1.0

	6.0

	4



	1.0

	7.0

	1



	1.0

	8.0

	3



	4.0

	2.0

	2



	6.0

	1.0

	1











Neighbouring grey level dependence matrix (3D)

3cm

volumetrically (3D) from the digital phantom using Chebyshev distance 1
and coarseness 0.









	i

	j

	s





	1.0

	5.0

	2



	1.0

	6.0

	2



	1.0

	7.0

	1



	1.0

	8.0

	6



	1.0

	9.0

	4



	1.0

	10.0

	6



	1.0

	11.0

	5



	1.0

	12.0

	5



	1.0

	13.0

	3



	1.0

	14.0

	2



	1.0

	15.0

	5



	1.0

	16.0

	3



	1.0

	17.0

	3



	1.0

	18.0

	2



	1.0

	21.0

	1



	3.0

	1.0

	1



	4.0

	2.0

	2



	4.0

	4.0

	2



	4.0

	5.0

	6



	4.0

	6.0

	4



	4.0

	7.0

	2



	6.0

	2.0

	1



	6.0

	3.0

	4



	6.0

	4.0

	1



	6.0

	5.0

	1
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The image biomarker standardisation initiative

The image biomarker standardisation initiative (IBSI) is an independent
international collaboration which works towards standardising the
extraction of image biomarkers from acquired imaging for the purpose of
high-throughput quantitative image analysis (radiomics). Lack of
reproducibility and validation of radiomic studies is considered to be a
major challenge for the field. Part of this challenge lies in the
scantiness of consensus-based guidelines and definitions for the process
of translating acquired imaging into high-throughput image biomarkers.
The IBSI therefore seeks to provide standardised image biomarker
nomenclature and definitions, a standardised general image processing
workflow, tools for verifying radiomics software implementations and
reporting guidelines for radiomic studies.


Permanent identifiers

The IBSI uses permanent identifiers for image biomarker definitions and
important related concepts such as image processing. These consist of
four-character codes and may be used for reference. Please do not use
page numbers or section numbers as references, as these are subject to
change.



Copyright

This work is a copy-edited version of the final (v10) pre-print version
of the IBSI reference manual, which was licensed under the Creative
Commons Attribution 4.0 International License (CC-BY). The original work
may be cited as: [redacted]

Copyright information regarding the benchmark data sets may be found on
GitHub: https://github.com/theibsi/data_sets
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